Amblyopia

Sorry, no news articles match your request. Your search criteria may be too narrow.

Amblyopia, also known as lazy eye, is a disorder of the visual system that is characterized by a vision deficiency in an eye that is otherwise physically normal, or out of proportion to associated structural abnormalities of the eye. It has been estimated to affect 1–5% of the population.

Amblyopia means that visual stimulation either fails to transmit or is poorly transmitted through the optic nerve to the brain for a continuous period of time. It can also occur when the brain "turns off" the visual processing of one eye, to prevent double-vision, for example in strabismus (crossed-eyes). It often occurs during early childhood, resulting in poor or blurry vision. Amblyopia normally affects only one eye in most patients. However, it is possible, though rare, to be amblyopic in both eyes, if both fail to receive clear visual images. Detecting the condition in early childhood increases the chance of successful treatment, especially if detected before the age of five. The earlier it is detected, and the underlying cause corrected with spectacles and/or surgery, the more successful the treatment in equalizing vision between the two eyes.

The colloquialism "lazy eye" is frequently used to refer to amblyopia. The term "lazy eye" is imprecise because it is a layman's term for strabismus, particularly exotropia.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

Heart's own immune cells can help it heal

(Medical Xpress)—The heart holds its own pool of immune cells capable of helping it heal after injury, according to new research in mice at Washington University School of Medicine in St. Louis.

Making lab-grown tissues stronger

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments.

Fruit fly lights up brain wiring

(Medical Xpress)—Fluorescent fruit flies have helped University of Queensland researchers take a critical step toward understanding the human brain's neuronal "wiring" and how it can go awry.

The 'ultimate' stem cell

In the earliest moments of a mammal's life, the developing ball of cells formed shortly after fertilisation 'does as mother says' – it follows a course that has been pre-programmed in the egg by the mother. ...