Anemia (/əˈniːmiə/; also spelled anaemia and anæmia; from Greek ἀναιμία anaimia, meaning lack of blood) is a decrease in number of red blood cells (RBCs) or less than the normal quantity of hemoglobin in the blood. However, it can include decreased oxygen-binding ability of each hemoglobin molecule due to deformity or lack in numerical development as in some other types of hemoglobin deficiency.

Because hemoglobin (found inside RBCs) normally carries oxygen from the lungs to the tissues, anemia leads to hypoxia (lack of oxygen) in organs. Since all human cells depend on oxygen for survival, varying degrees of anemia can have a wide range of clinical consequences.

Anemia is the most common disorder of the blood. There are several kinds of anemia, produced by a variety of underlying causes. Anemia can be classified in a variety of ways, based on the morphology of RBCs, underlying etiologic mechanisms, and discernible clinical spectra, to mention a few. The three main classes of anemia include excessive blood loss (acutely such as a hemorrhage or chronically through low-volume loss), excessive blood cell destruction (hemolysis) or deficient red blood cell production (ineffective hematopoiesis).

There are two major approaches: the "kinetic" approach which involves evaluating production, destruction and loss, and the "morphologic" approach which groups anemia by red blood cell size. The morphologic approach uses a quickly available and low cost lab test as its starting point (the MCV). On the other hand, focusing early on the question of production may allow the clinician to expose cases more rapidly where multiple causes of anemia coexist.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

A metabolic switch to turn off obesity

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Team announces mapping of the mouse cortex in 3-D

The Allen Institute for Brain Science has completed the three-dimensional mapping of the mouse cortex as part of the Allen Mouse Common Coordinate Framework (CCF): a standardized spatial coordinate system for comparing many ...