Birth Asphyxia

Intrauterine hypoxia (IH, and birth asphyxia) occur when the fetus is deprived of an adequate supply of oxygen. IH is used to describe inadequate oxygen availability during the gestation period, birth asphyxia (also referred to as perinatal asphyxia or Asphyxia neonatorum ) can result from inadequate supply of oxygen immediately prior to, during or just after delivery. There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.

IH may be due to a variety of reasons such as cord prolapse, cord occlusion, placental infarction and maternal smoking. Intrauterine growth restriction (IUGR) may cause or be the result of hypoxia. Birth asphyxia may result due to prolonged labor, breech delivery in full-term infants; placental abruption, and maternal sedation in premature infants. Oxygen deprivation is the most common cause of perinatal brain injury.

Intrauterine hypoxia and birth asphyxia can cause hypoxic ischemic encephalopathy which is cellular damage that occurs within the central nervous system (the brain and spinal cord) from inadequate oxygen. This results in an increased mortality rate, including an increased risk of Sudden infant death syndrome (SIDS). Oxygen deprivation in the fetus and neonate have been implicated as either a primary or as a contributing risk factor in numerous neurological and neuropsychiatric disorders such as epilepsy, ADHD, eating disorders and cerebral palsy. " The problem of perinatal brain injury, in terms of the costs to society and to the affected individuals and their families, is extraordinary." (Yafeng Dong, PhD)

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

Bionic ankle 'emulates nature'

These days, Hugh Herr, an associate professor of media arts and sciences at MIT, gets about 100 emails daily from people across the world interested in his bionic limbs.

Some immune cells defend only one organ

(Medical Xpress)—Scientists have uncovered a new way the immune system may fight cancers and viral infections. The finding could aid efforts to use immune cells to treat illness.

Firm targets 3D printing synthetic tissues, organs

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Survival hope for melanoma patients thanks to new vaccine

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.