Hutchinson Gilford Progeria Syndrome

Researchers find new clues about aging

National Institutes of Health researchers have identified a new pathway that sets the clock for programmed aging in normal cells. The study provides insights about the interaction between a toxic protein called progerin and ...

Jun 13, 2011
popularity0 comments 0

Genetic disease linked to protein build-up

Mutations of the gene Lmna previously thought to be directly responsible for a group of laminopathies—serious developmental conditions including premature aging and a form of muscular dystrophy—in fact cause them by allowing ...

Aug 29, 2012
popularity0 comments 0

Progeria (also known as "Hutchinson–Gilford Progeria Syndrome", "Hutchinson–Gilford syndrome", and "Progeria syndrome") is an extremely rare genetic condition wherein symptoms resembling aspects of aging are manifested at an early age. The word progeria comes from the Greek words "pro" (πρό), meaning "before", and "géras" (γῆρας), meaning "old age". The disorder has very low incidences and occurs in an estimated 1 per 8 million live births. Those born with progeria typically live to their mid teens and early twenties. It is a genetic condition that occurs as a new mutation (de novo), and is rarely inherited. Although the term progeria applies strictly speaking to all diseases characterized by premature aging symptoms, and is often used as such, it is often applied specifically in reference to Hutchinson-Gilford Progeria Syndrome(HGPS).

Scientists are particularly interested in progeria because it might reveal clues about the normal process of aging. Progeria was first described in 1886 by Jonathan Hutchinson. It was also described independently in 1897 by Hastings Gilford. The condition was later named Hutchinson-Gilford Progeria Syndrome (HGPS).

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

New 'Tissue Velcro' could help repair damaged hearts

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Closing the loop with optogenetics

An engineering example of closed-loop control is a simple thermostat used to maintain a steady temperature in the home. Without it, heating or air conditioning would run without reacting to changes in outside conditions, ...