Lyme Disease

Lyme disease, or Lyme borreliosis, is an emerging infectious disease[when?] caused by at least three species of bacteria belonging to the genus Borrelia. Borrelia burgdorferi sensu stricto is the main cause of Lyme disease in the United States, whereas Borrelia afzelii and Borrelia garinii cause most European cases. The disease is named after the town of Lyme, Connecticut, USA, where a number of cases were identified in 1975. Although Allen Steere realized that Lyme disease was a tick-borne disease in 1978, the cause of the disease remained a mystery until 1981, when B. burgdorferi was identified by Willy Burgdorfer.

Lyme disease is the most common tick-borne disease in the Northern Hemisphere.[citation needed] Borrelia is transmitted to humans by the bite of infected ticks belonging to a few species of the genus Ixodes ("hard ticks"). Early symptoms may include fever, headache, fatigue, depression, and a characteristic circular skin rash called erythema migrans (EM). Left untreated, later symptoms may involve the joints, heart, and central nervous system. In most cases, the infection and its symptoms are eliminated by antibiotics, especially if the illness is treated early. Delayed or inadequate treatment can lead to the more serious symptoms, which can be disabling and difficult to treat. Lyme disease is a biosafety level 2 disease.[citation needed]

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

How language gives your brain a break

Here's a quick task: Take a look at the sentences below and decide which is the most effective. (1) "John threw out the old trash sitting in the kitchen." (2) "John threw the old trash sitting in the kitchen out."

Study reveals new insight into DNA repair

DNA double-strand breaks (DSBs) are the worst possible form of genetic malfunction that can cause cancer and resistance to therapy. New information published this week reveals more about why this occurs and how these breaks ...

New insight into how the immune system sounds the alarm

T cells are the guardians of our bodies: they constantly search for harmful invaders and diseased cells, ready to swarm and kill off any threats. A better understanding of these watchful sentries could allow scientists to ...