Methicillin Resistant Staphylococcus Aureus

Nursing home infection rates on the rise, study finds

Nursing home infection rates are on the rise, a study from Columbia University School of Nursing found, suggesting that more must be done to protect residents of these facilities from preventable complications. ...

Oct 08, 2014
popularity 5 / 5 (1) | comments 0

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium responsible for several difficult-to-treat infections in humans. It is also called multidrug-resistant Staphylococcus aureus and oxacillin-resistant Staphylococcus aureus (ORSA). MRSA is any strain of Staphylococcus aureus that has evolved resistance to beta-lactam antibiotics, which include the penicillins (methicillin, dicloxacillin, nafcillin, oxacillin, etc.) and the cephalosporins. The development of such resistance does not cause the organism to be more intrinsically virulent than strains of Staphylococcus aureus that have no antibiotic resistance, but resistance does make MRSA infection more difficult to treat with standard types of antibiotics and thus more dangerous.

MRSA is especially troublesome in hospitals and nursing homes, where patients with open wounds, invasive devices, and weakened immune systems are at greater risk of infection than the general public.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

Rewiring cell metabolism slows colorectal cancer growth

Cancer is an unwanted experiment in progress. As the disease advances, tumor cells accumulate mutations, eventually arriving at ones that give them the insidious power to grow uncontrollably and spread. Distinguishing ...

Neuroscience: Why scratching makes you itch more

Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release ...

Heart's own immune cells can help it heal

(Medical Xpress)—The heart holds its own pool of immune cells capable of helping it heal after injury, according to new research in mice at Washington University School of Medicine in St. Louis.

Making lab-grown tissues stronger

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments.

Fruit fly lights up brain wiring

(Medical Xpress)—Fluorescent fruit flies have helped University of Queensland researchers take a critical step toward understanding the human brain's neuronal "wiring" and how it can go awry.