Paroxysmal Kinesigenic Choreoathetosis

Paroxysmal kinesigenic choreathetosis (PKC) also called Paroxysmal Kinesigenic Dyskinesia (PKD) is a hyperkinetic movement disorder characterized by attacks of involuntary movements, which are triggered by sudden voluntary movements. The number of attacks can range from up to twenty times per day, to more than twenty times per day, with attacks increasing during puberty and decreasing in a person’s 20's to 30's. Involuntary movements can take many forms such as ballism, chorea or dystonia and usually only affect one side of the body or one limb in particular. This rare disorder only affects about 1 in 150,000 people with PKD accounting for 86.8% of all the types of paroxysmal dyskinesias and occurs more often in males than females. There are two types of PKD, primary and secondary. Primary PKD can be further broken down into familial and sporadic. Familial PKD, which means the individual has a family history of the disorder, is more common, but sporadic cases are also seen. Secondary PKD can be caused by many other medical conditions such as multiple sclerosis (MS), stroke, pseudohypoparathyroidism, hypocalcemia, hypoglycemia, hyperglycemia, central nervous system trauma, or peripheral nervous system trauma. PKD has also been linked with The ICCA Syndrome, in which patients have afebrile seizures as children and then develop paroxysmal choreoathetosis later in life. This phenomenon is actually quite common, with about 42% of individuals with PKD reporting a history of afebrile seizures as a child.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

Teen brains facilitate recovery from traumatic memories

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

Genetic sequencing reveals drug resistance growth

The rate at which genetically mutated cancer cells grow may help explain why patients with a common form of leukemia develop treatment resistance, according to new research led by a Weill Cornell Medicine investigator. The ...

Neuroscientists illuminate role of autism-linked gene

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.