Type 1 Diabetes

Mysterious esophagus disease is autoimmune after all

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

Jul 22, 2014
popularity 5 / 5 (1) | comments 0

Inadequate support in schools for diabetic children

The project entitled 'Young people with diabetes and their peers' led by Dr Brooks – who is a psychologist with the University of Huddersfield's Centre for Applied Psychological and Health Research – set out to examine ...

Jul 11, 2014
popularity not rated yet | comments 0

FDA approves inhaled diabetes medication

(HealthDay)—People with type 1 or 2 diabetes now have a new means of getting their medication, with the U.S. Food and Drug Administration's approval on Friday of the first inhaled medicine for the blood ...

Jun 28, 2014
popularity 5 / 5 (3) | comments 0

Diabetes mellitus type 1 (Type 1 diabetes, T1DM, IDDM, or, formerly, juvenile diabetes) is a form of diabetes mellitus that results from autoimmune destruction of insulin-producing beta cells of the pancreas. The subsequent lack of insulin leads to increased blood and urine glucose. The classical symptoms are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger), and weight loss.

Incidence varies from 8-17/100,000 in Northern Europe and the U.S., with a high of about 35/100,000 in Scandinavia, to a low of 1/100,000 in Japan and China.

Eventually, type 1 diabetes is fatal unless treated with insulin. Injection is the most common method of administering insulin; other methods are insulin pumps and inhaled insulin. Pancreatic transplants have been used. Pancreatic islet cell transplantation is experimental, though growing.

Most people who develop type 1 are otherwise healthy. Although the cause of type 1 diabetes is still not fully understood, it is believed to be of immunological origin.

Type 1 can be distinguished from type 2 diabetes via a C-peptide assay, which measures endogenous insulin production.

Type 1 treatment must be continued indefinitely in all cases. Treatment is not intended to significantly impair normal activities, and can be done adequately if sufficient patient training, awareness, appropriate care, discipline in testing and dosing of insulin is taken. However, treatment remains quite burdensome for many people. Complications may be associated with both low blood sugar and high blood sugar, both largely due to the non-physiological manner in which insulin is replaced. Low blood sugar may lead to seizures or episodes of unconsciousness and requires emergency treatment. High blood sugar may lead to increased fatigue and can also result in long term damage to organs.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

Monitoring the rise and fall of the microbiome

Trillions of bacteria live in each person's digestive tract. Scientists believe that some of these bacteria help digest food and stave off harmful infections, but their role in human health is not well understood.

Brain's dynamic duel underlies win-win choices

People choosing between two or more equally positive outcomes experience paradoxical feelings of pleasure and anxiety, feelings associated with activity in different regions of the brain, according to research ...

Antioxidant biomaterial promotes healing

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

New imaging agent provides better picture of the gut

A multi-institutional team of researchers has developed a new nanoscale agent for imaging the gastrointestinal (GI) tract. This safe, noninvasive method for assessing the function and properties of the GI tract in real time ...

Researchers find new mechanism for neurodegeneration

A research team led by Jackson Laboratory Professor and Howard Hughes Investigator Susan Ackerman, Ph.D., have pinpointed a surprising mechanism behind neurodegeneration in mice, one that involves a defect in a key component ...