Fertile? Not Without the Brain

October 20, 2006

There are many causes of infertility. The fact that nerve cells can also play a role is little known. The hormone estrogen regulates the activity of neurons that give the starting signal for ovulation. Collaborating with international research groups, scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have studied this signaling pathway in detail and have discovered new causes of infertility.

The time of a woman’s monthly ovulation depends on how far the egg is matured and on the brain being informed about this. Estrogen, a hormone produced in the ovaries, transmits this message to the brain around the 14th day of the fertility cycle. In response, the stimulated neurons trigger increased release of another hormone called gonadotropin from the pituitary gland and, thus, give the signal for ovulation.

“The better we understand how estrogens work and what may go wrong in the interaction with neurons, the more possibilities we will have to counteract infertility,” says Professor Günther Schütz, head of the Division of Molecular Biology of the Cell I at the German Cancer Research Center. Schütz and his co-workers, collaborating with Professor Allan Herbison in New Zealand and two research groups in the U.S., demonstrated that only a specific group of neurons in the brain receive the hormone signal. These cells need to have the estrogen receptor alpha in order to recognize the message and subsequently trigger production of the necessary sex hormones.

Estrogen receptors are specialized on perceiving the estrogen hormone. Two types of estrogen receptors, alpha and beta, are found in the nervous system. It has been known that female animals suffer from lesions in the ovaries, mammary glands and uterus when they lack the estrogen receptor alpha. “Every single one of these defects is sufficient to make the animals infertile,” says biochemist Dr. Tim Wintermantel. Moreover, there were indications suggesting that estrogen receptor beta is also relevant for fertility. The scientists performed several experiments to find out more about the role played by the two estrogen receptors in the activation of neurons in the brain.

They studied mice who lacked the estrogen receptor alpha only in nerve cells. Additional estrogen given to these animals failed to trigger the hormone signal for ovulation. Furthermore, the investigators administered synthetic molecules developed and provided by Schering AG, Berlin, to healthy female mice. These substances activated exclusively the estrogen receptor alpha. This alone was sufficient to increase hormone production substantially. “Both experiments led to corresponding results,” explains Tim Wintermantel. “The estrogen receptor alpha needs to be not only present but also activated.”

Nevertheless, a gap in the researchers’ model became apparent: The neurons that are critical for the release of the messenger substance gonadotropin do not have the estrogen receptor alpha. How do the gonadotropin producers receive the signal to increase hormone release if they are unable to receive the estrogen message? The researchers discovered that a second group of neurons in the hypothalamus transmits the message. They demonstrated that these mediators are equipped with the alpha antenna and that they use long cellular extensions to connect with the cells that induce gonadotropin production in the pituitary gland.

Günther Schütz is convinced that this regulatory cycle is not the only one that estrogen uses to control the activity of neurons. “This could be important, for example, for patients who lack a specific receptor on the gonadotropin producing cells and who are infertile because of this,” he says. Therefore, the medical researcher plans to investigate further signaling pathways of estrogen in the brain with his co-workers in future.

Source: German Cancer Research Center

Explore further: Researchers identify gene partly responsible for maternal care in mice

Related Stories

Estrogen: Not just produced by the ovaries

December 4, 2013

A University of Wisconsin-Madison research team reports today that the brain can produce and release estrogen—a discovery that may lead to a better understanding of hormonal changes observed from before birth throughout ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.