Short chromosomes put cancer cells in forced rest

April 25, 2007

A Johns Hopkins team has stopped in its tracks a form of blood cancer in mice by engineering and inactivating an enzyme, telomerase, thereby shortening the ends of chromosomes, called telomeres.

"Normally, when telomeres get critically short, the cell commits suicide as a means of protecting the body," says Carol Greider, Ph.D., the Daniel Nathans chair of molecular biology and genetics at Johns Hopkins. Her study, appearing online this month at Cancer Cell, uncovers an alternate response where cells simply - and permanently - stop growing, a process known as senescence.

In an unusual set of experiments, the research team first mated mice with nonoperating telomerase to mice carrying a mutation that predisposed them to Burkitt’s lymphoma, a rare but aggressive cancer of white blood cells. Telomerase helps maintain the caps or ends of chromosomes called telomeres, which shrink each time a cell divides and eventually - when the chromosomes get too short - force the cell to essentially commit suicide. Such cell death is natural, and when it fails to happen, the result may be unbridled cell growth, or cancer.

The first generation pups born to these mice contained no telomerase and very long telomeres. These mice all developed lymphomas by the time they were 7 months old. The researchers then continued breeding the mice to see what would happen in later generations. By the fifth generation, the researchers discovered that the mice had short telomeres and stopped developing lymphomas.

When the researchers blocked the suicide machinery in these fifth-generation mice, they were very surprised to find that the mice still remained cancer free.

"We were confused as to what was going on; we thought for sure that blocking the cells’ ability to commit suicide would lead to the cancer’s returning," says Greider. A closer look showed microtumors in the mice’s lymph nodes that had begun the road to cancer, but stopped, falling instead into a state of senescence.

"They don’t die, they don’t divide, they just sit there in permanent rest," says Greider.
Greider, who won the Lasker Award in 2006 for her discovery of telomerase, says further study of the road to senescence should suggest new ways of preventing or treating cancer by interfering safely with telomerase and the cell-suicide system.

Source: Johns Hopkins Medical Institutions

Explore further: Blocking telomerase kills cancer cells but provokes resistance, progression

Related Stories

Researchers uncover new cancer cell vulnerability

July 18, 2014

(Medical Xpress)—Yale School of Medicine and Yale Cancer Center researchers have uncovered a genetic vulnerability of cancer cells that express telomerase—an enzyme that drives their unchecked growth—and showed that ...

Anti-aging tricks from dietary supplement seen in mice

August 21, 2015

In human cells, shortened telomeres, the protective caps at the ends of chromosomes, are both a sign of aging and contribute to it. Scientists at Emory University School of Medicine have found that the dietary supplement ...

Scientists are able to take immortality from cancer

May 13, 2015

Scientists from the Spanish National Cancer Research Centre (CNIO) have discovered a new strategy to fight cancer, which is very different from those described to date. Their work shows for the first time that telomeres—the ...

Recommended for you

Study: Enhancing cancer response to radiation

December 2, 2016

OHSU researcher Sudarshan Anand, Ph.D., has a contemporary analogy to describe microRNA: "I sometimes compare MicroRNA to tweets—they're short, transient and constantly changing."

Rare childhood disease linked to major cancer gene

December 1, 2016

A team of researchers led by a University of Rhode Island scientist has discovered an important molecular link between a rare childhood genetic disease, Fanconi anemia, and a major cancer gene called PTEN. The discovery improves ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.