Researchers learn more about genetic mutation linked to autism

May 3, 2007

University of Iowa researchers have learned more about a genetic mutation that contributes to autism. The mutation occurred in sperm cells of a father, who does not have autism, but passed the condition on to two of his children.

The investigators now know more about how the mutation causes problems with a specific gene and are testing for additional mutations of the same gene in other people with autism. Thomas Wassink, M.D., associate professor of psychiatry in the UI Carver College of Medicine, is presenting the findings May 3 at the annual International Meeting for Autism Research in Seattle.

Earlier this year, UI researchers and collaborators were part of an international team that identified, among other findings, deletions in a gene called neurexin 1, which caused the two cases of autism in one family. The UI researchers and collaborators were Wassink; Val Sheffield, M.D., Ph.D., UI professor of pediatrics and a Howard Hughes Medical Investigator; Kacie Meyer, a graduate student in Wassink's laboratory; and former UI investigator Joseph Piven, M.D., now professor of psychiatry at the University of North Carolina (UNC) and director of the UNC Neurodevelopmental Disorders Research Center,

"Genes with the most compelling evidence of causing autism appear to be components of a specific kind of neuronal connection, or synapse, called the glutamate synapse. The gene neurexin 1 was the fourth of these genes to be identified, and it is a scientifically interesting mutation because it wasn't found in either of the parents, who do not have autism," Wassink said.

Instead, the mutation is a germline mosaic -- meaning the deletion occurred only in the father's sperm cells when he himself was in gestation. As result, the father did not have autism, but his two children, both daughters, inherited from him a chromosome that was missing a small piece of DNA that contained neurexin 1. The daughters now have autism.

Because of this missing DNA, certain proteins cannot form that normally contribute to glutamate synapses and, by extension, normal development.

"Now, using this information, we can look in a very detailed way at this gene in other families and begin to understand what happens when this protein that is normally active in the brain is missing," Wassink said.

Knowing more about how the deletions function could eventually lead to the development of diagnostic and therapeutic tools.

Source: University of Iowa

Explore further: Scientists link single gene to some cases of autism spectrum disorder

Related Stories

Impaired recycling of mitochondria in autism?

October 18, 2016

Tuberous sclerosis complex (TSC), a genetic disorder that causes autism in about half of those affected, could stem from a defect in a basic system cells use to recycle their mitochondria, report scientists at Boston Children's ...

Recommended for you

Maternal blood test may predict birth complications

October 24, 2016

A protein found in the blood of pregnant women could be used to develop tests to determine the health of their babies and aid decisions on early elective deliveries, according to an early study led by Queen Mary University ...

Scientists find new genetic roots of schizophrenia

October 19, 2016

UCLA scientists have made a major advance in understanding the biology of schizophrenia. Using a recently developed technology for analyzing DNA, the scientists found dozens of genes and two major biological pathways that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.