Muscle weakness: New mutation identified

June 14, 2007

New research, published in The Journal of Physiology, has identified a novel mutation associated with muscle weakness and distal limb deformities. The study demonstrates that muscle weakness experienced by persons with a regulatory protein tropomyosin mutation is directly related to a mechanism by which the mutant tropomyosin modulates contractile speed and force-generation capacity.

Dr. Julien Ochala and co-workers at the Department of Clinical Neurophysiology, University of Uppsala, in collaboration with scientists at the Department of Pathology, University of Göteborg, explored the mechanisms underlying the muscle weakness experienced by a woman and her daughter with a β-tropomyosin mutation, i.e., muscle weakness in the absence of macro or microscopic signs of muscle wasting.

The results from single fibre contractile measurements and in vitro motility analyses demonstrated a mechanism where tropomyosin modulates myosin-actin kinetics. A slower motor protein myosin attachment rate to and a faster detachment rate from actin, caused by the mutation, results in a reduced number of myosin molecules in the strong actin binding state and muscle weakness. The results also implicate a potential role of the regulatory protein tropomyosin in modulating contractile speed and force-generation under physiological conditions.

It is suggested that the findings at the gene, protein and muscle cell levels in this specific neuromuscular disorder will have a significant impact on our understanding of the disease pathogenesis and provide important information for future therapeutic strategies. Walter R. Frontera, an independent expert, says: "Dr. Ochala and collaborators have published elegant proof of the clinical consequences of mutations in the regulatory proteins of skeletal muscles. Their data provide strong support for the dissociation between qualitative alterations in muscle contractility and quantitative evidence of muscle atrophy".

Source: Blackwell Publishing Ltd.

Explore further: Stanford patient is first infant to receive lifesaving drug for neurodegenerative disease

Related Stories

New mouse model of ALS more closely mimics human disease

November 7, 2016

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a progressive, fatal neurological disease that attacks the nerve cells controlling voluntary muscles. No effective treatments have been found.

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.