Researchers separate analgesic effects from addictive aspects of pain-killing drugs

August 21, 2007

For the first time, pain researchers at Washington University School of Medicine in St. Louis have shown that it's possible to separate the good effects of opiate drugs such as morphine (pain relief) from the unwanted side effects of those drugs (tolerance, abuse and addiction).

The investigators, led by Zhou-Feng Chen, Ph.D., associate professor of anesthesiology, psychiatry and molecular biology and pharmacology, report their results online in the Proceedings of the National Academy of Sciences. They found that opiates like morphine don't relieve pain as well in mice genetically engineered to lack neurons that produce a neurotransmitter called serotonin in the central nervous system. In fact, some opiates completely lost their analgesic, or pain-relieving, effects in the mutant mice. But to the surprise of the investigators, those mice still developed tolerance to the drugs and actively sought them out.

Serotonin is involved in a wide range of behavioral and psychological processes including cognition, circadian rhythm and mood. Serotonin also is an important regulator for pain sensation, and abnormal levels of serotonin can contribute to painful events such as migraine headaches.

"The number of serotonin-producing neurons, which also are know as 5-HT neurons, is relatively small, and they are found in a very restricted area of the hindbrain," Chen explains. "Importantly, however, these neurons make extensive connections to other parts of the brain and are able to release serotonin almost everywhere in the central nervous system. These neurons have been implicated in almost every aspect of physiological function and in psychiatric disorders including anxiety and depression."

For several decades, scientists have been interested in the role these 5-HT neurons play in the analgesic effects of opiate drugs such as morphine. Studies done in the 1970s and the 1980s determined that the serotonin system was involved in the pain-killing effects of these drugs. But other studies have contradicted that "classical" view. As a result, the involvement of 5-HT neurons in the analgesic effects of opiates has remained uncertain.

In 2003, Chen's research team found that mice missing a gene called Lmx1b were completely unable to produce serotonin in the brain. But those mice could not be used for behavioral studies because they died soon after birth. To overcome that problem, Chen and his collaborators developed a line of mice lacking Lmx1b only in 5-HT neurons. Remarkably, despite the loss of all 5-HT neurons in the central nervous system, the mutant mice live to adulthood with apparently normal motor function.

Earlier this year, Chen's team reported in the Journal of Neuroscience that the mutant mice had increased pain when they encountered a painful stimulus. In this new study, Chen's team compared the pain-relieving effects of opiate drugs in normal mice to the effects in the mice without 5-HT neurons. "We performed a number of tests to measure the response of the mice to different opiate drugs," he says. "In contrast to previous studies that used drugs to destroy or disable 5-HT neurons, our study provides the first genetic evidence to support the 'classical' view that 5-HT neurons are a very important component of the neural circuits required for the analgesic effects of these drugs."

They also compared unwanted side effects such as tolerance and morphine-induced drug-seeking behaviors in mice with and without serotonergic neurons, and they found no differences. "These findings demonstrate that opiates exert their analgesic effects through a serotonin mechanism but that serotonin is not responsible for the negative, addictive side effects associated with those pain-killing drugs," Chen says. "That was unexpected because serotonin has been known to interact with other neurotransmitters like dopamine or to modulate the levels of these neurotransmitters in the forebrain, which is important for reward-seeking behaviors." Chen says the finding raises the possibility that serotonergic neurons or opiate receptors on those neurons could be potential targets for opiate drugs that might suppress pain without risk of tolerance and drug addiction.

Source: Washington University in St. Louis

Explore further: Huntington's disease affects muscle as well as neurons, study reveals

Related Stories

Study provides neuronal mechanism for the benefits of fasting

December 1, 2016

A study from the Buck Institute offers for the first time an explanation for the benefits of fasting at the neuronal level, providing a possible mechanism for how fasting can afford health benefits. Publishing on December ...

Why running could keep you awake at night

November 29, 2016

You've probably heard people say they enjoy running because it lets them switch off. Perhaps you feel that way yourself. Well recent research in mice suggests there may actually be a scientific basis for this, because brain ...

Autism-linked protein crucial for feeling pain

December 1, 2016

Sensory problems are common to autism spectrum disorders. Some individuals with autism may injure themselves repetitively—for example, pulling their hair or banging their heads—because they're less sensitive to pain than ...

Parkinson's disease linked to microbiome

December 1, 2016

Caltech scientists have discovered for the first time a functional link between bacteria in the intestines and Parkinson's disease (PD). The researchers show that changes in the composition of gut bacterial populations—or ...

New form of autism found

December 1, 2016

Autism spectrum disorders affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication. In a new study published in Cell today, a team of researchers ...

Recommended for you

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.