Chemical signature of manic depression discovered by scientists

February 5, 2008

People with manic depression have a distinct chemical signature in their brains, according to a new study. The research, published today in the journal Molecular Psychiatry, may also indicate how the mood stabilisers used to treat the disorder counteract the changes in the brain that it appears to cause.

Manic depression, which is also known as bipolar disorder, is a debilitating psychiatric condition characterised by alternating mania and depression, affecting about one in every hundred people worldwide. Although it is known that the condition can be treated relatively effectively using the mood-stabilising drugs lithium and valproic acid, the reasons why these treatments work are poorly understood.

The authors of the new study, from Imperial College London, the University of Cambridge, and the National Institutes of Mental Health in the US, hope that their research will enable a better understanding of the condition and of how it can be treated.

The researchers compared postmortem brain tissue samples of people with manic depression with those of age and gender matched controls. The samples were taken from the dorsolateral prefrontal cortex, which controls the processes involved in higher cognitive functioning. The researchers analysed these samples using Nuclear Magnetic Resonance spectroscopy and found that people with manic depression had different concentrations of chemicals in this area of the brain than those without.

The researchers also used rat models to see the effects of lithium and valproic acid on the metabolite makeup of non-bipolar brain tissue. They found that these drugs caused the opposite chemical changes to those seen in the bipolar brain tissue samples. Chemicals that were increased in the bipolar brain tissue were decreased in rats given the mood stabilising drugs, and vice versa.

The researchers’ findings lead them to believe that an upset in the balance of different neurotransmitters known as excitatory and inhibitory neurotransmitters, which are involved in sending signals in the brain, may be central to the disorder. The study also suggests that lithium and valproic acid work by restoring the balance of these neurotransmitters in the brain.

Levels of glutamate, an amino acid which acts as a neurotransmitter in the central nervous system, were increased in post mortem bipolar brain but glutamate / glutamine ratios were decreased following valproate treatment. Levels of another neurotransmitter, gamma-aminobutyric acid, were increased after lithium treatment and decreased in the bipolar brain. Both creatine and myo-inositol were increased in the post-mortem brain but depleted with the medications.

Dr Tsz Tsang, one of the authors of the study from the Department of Biomolecular Medicine at Imperial College London, said: “By identifying a distinct biochemical profile in patients with bipolar disorder, our new research provides a valuable insight into the origins and causes of the disease. Moreover, the changes we see in people’s metabolic signatures may give a target for drug therapy, allowing us to see how effective a drug is at correcting these changes.

“In this instance, we have already shown that the biochemical changes which valproic acid and lithium bring about in mammalian models represent almost a mirror image of the perturbations in bipolar disorder. This may provide a useful insight to the actions of these treatments and a basis for which to improve therapy in the future,” added Dr Tsang.

Source: Imperial College London

Explore further: Obesity among adolescents with bipolar disorder is linked to increased illness severity

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Feb 06, 2008
Are these findings a warning that consumption of creatine by athletes may lead to bipolar like behavior or at least disturbed mentation?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.