Pinpoint accuracy: DNA vaccines that home in on DCs are more potent

March 7, 2008

One strategy being pursued to develop new vaccines against infectious diseases is DNA vaccination. The idea is that following administration of a DNA vaccine, the body converts the information in the DNA vaccine into a protein that activates an immune response.

However, current DNA vaccines induce relatively weak immune responses even if administered multiple times. New data, generated in mice, by Ralph Steinman and colleagues, at the Rockefeller University, New York, has now identified a way to make DNA vaccines more potent.

In the study, mice were administered a DNA vaccine that included the information to make a single protein comprised of the HIV protein gp41 fused to a single-chain Fv antibody specific for DEC205. DEC205 is expressed by immune cells known as DCs, which show proteins from infectious organisms to immune cells known as T cells that then attack the infectious organism. The authors found that the single-chain Fv antibody specific for DEC205 targeted the protein made from the information in the DNA vaccine to DCs, such that it was expressed exclusively in DCs.

Furthermore, this DNA vaccine induced a much stronger T cell response than DNA vaccines including information to make the HIV protein gp41 fused to an irrelevant single-chain Fv antibody, and it protected mice more efficiently from a virus engineered to express the HIV protein gp41. These data led to the suggestion that DNA vaccines might be more potent if the information they contain generates a protein that is targeted to DCs, for example by fusion to a single-chain Fv antibody specific for a DC surface molecule.

Source: Journal of Clinical Investigation

Explore further: Three candidate Zika vaccines protect rhesus monkeys against the disease

Related Stories

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

NIH begins testing investigational Zika vaccine in humans

August 3, 2016

The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has launched a clinical trial of a vaccine candidate intended to prevent Zika virus infection. The early-stage ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.