Caffeine prevents multiple sclerosis-like disease in mice

April 7, 2008

Mice given caffeine equivalent to a human drinking six to eight cups of coffee a day were protected from developing experimental autoimmune encephalomyelitis (EAE), the animal model for the human disease Multiple Sclerosis (MS), according to researchers at Cornell University.

Caffeine is a well-known adenosine receptor blocker, and the researchers believe results show the importance of this molecule in permitting the infiltration of immune cells into the central nervous system of patients with MS.

Dr. Jeffrey H. Mills, a postdoctoral associate in the laboratory of Dr. Margaret S. Bynoe, presented the findings at Experimental Biology 2008 on April 7. The presentation was part of the scientific programs of the American Society of Immunologists.

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) that occurs when the body’s immune system attacks and damages nerves in the brain and spinal cord. The infiltration of immune cells into brain and other CNS tissue is rarely seen in healthy individuals without MS. What allows the immune cells to infiltrate the CNS tissue of patients with MS is unknown. In earlier work, the Bynoe laboratory became convinced that the molecule adenosine is responsible for this infiltration.

Adenosine is widely present in the body and plays an important role in many biochemical processes, such as energy transfer and the promotion of sleep and suppression of arousal. The researchers’ first studies found that mice that lacked CD73, the enzyme necessary for synthesizing extracellular adenosine, were protected from developing the mouse form of MS (experimental autoimmune encephalomyelitis or EAE).

Additional studies involving immune cells from mice that lack CD73 further convinced them that normal CD73’s ability to synthesize extracellular adenosine was what was important for development and progression of the MS-like disease. That helped explain the presence of adenosine near the cells, but how did the compound get into the CNS cells? Since adenosine must bind to its receptor in order to affect a cell, the researchers reasoned that perhaps adenosine receptor activation was what allowed for entry of immune cells into the brain and spinal cord. To test that idea in the study presented at Experimental Biology 2008, they turned to caffeine.

Caffeine’s stimulatory effects on the CNS are in large part due to its ability to bind to the same receptors as adenosine, thus blocking adenosine’s ability to affect CNS cells. Mice that consumed caffeine in their drinking water were protected from development of EAE, the MS model. Dr. Bynoe concludes that these experiments show that CD73 and adenosine receptor signaling are required for the efficient entry of immune cells into the CNS during the initiation and progression of EAE in mice and, quite possibly, during the development of MS in humans.

Dr. Bynoe adds, “These results might mark the first in a series of discoveries from our lab that could spawn the impetus for the development of adenosine-based therapies for the treatment of MS.”

Source: Federation of American Societies for Experimental Biology

Explore further: Novel mechanisms of action discovered for skin cancer medication Imiquimod

Related Stories

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Adenosine in Ambrosia pollen increases allergic response

June 17, 2015

Ragweed (Ambrosia artemisiifolia) - an otherwise unremarkable plant - produces pollen that can trigger strong allergic reactions such as asthma even in very small quantities. Scientists from Technische Universität München ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 04, 2009
great findings on study about caffeine.I enjoy the article. great read!. I hope with this study more and more disease will also be cured.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.