A new look at how memory and spatial cognition are related

August 4, 2008

In a study that sheds new light on how memory and spatial cognition are related to each other in the brain, researchers at the University of California, San Diego School of Medicine and the Veteran Affairs (VA) San Diego Healthcare System studied memory-impaired patients as they navigated their environment.

Path integration, or the ability of the brain to compute the distance and direction of a traveled path, is an important aspect of spatial cognition – an ability long-thought to be dependent on the medial temporal lobe structures of the brain.

However, the researchers discovered that the hippocampus and entorhinal cortex – two major medial temporal lobe structures – are not essential for path integration. Their findings will be published in the early on line edition of Proceedings of the National Academy of Sciences (PNAS) the week of August 4.

The study, led by Larry R. Squire, Ph.D., professor of psychiatry, neurosciences and psychology at UCSD School of Medicine and research career scientist at the VA San Diego Healthcare System, was designed to measure whether these structures of the brain are essential for spatial cognition.

"For decades, the medial temporal lobe structures have been linked to both memory and spatial cognition," said Squire. One important aspect of spatial cognition is keeping track of a reference location during movement by using internal cues, Squire explained, yet such tracking also relies on memory. "So we set out to test how these two abilities related to one another and to the temporal lobe area of the brain."

The researchers looked at five memory-impaired patients with lesions of the medial temporal lobe along with seven matched controls, testing each for their path integration ability. Participants, who were blindfolded and wore noise-canceling earphones, were led by researchers on 16 paths and asked to keep their starting point in mind. After walking the path, participants were asked to point to their start location.

Due to their lesions, the five patients all had long-term memory impairment, so the paths were short enough that the task could be performed within the span of their working, or short-term, memory. Building on the idea that working memory is independent of the medial temporal lobe, the researchers theorized that these patients should succeed at the task if performed within the span of their short-term memory, unless this section of the brain was also necessary for spatial cognition.

The memory-impaired patients pointed to and estimated their distance from the start location as accurately as the controls.

"We concluded that the hippocampus and entorhinal cortex are not essential for path integration, since we showed that the tests could be successfully accomplished despite damage to these brain regions," said Squire.

Source: University of California - San Diego

Explore further: What parts of the brain make our personalities so unique?

Related Stories

What parts of the brain make our personalities so unique?

September 30, 2016

The brain is key to our existence, but there's a long way to go before neuroscience can truly capture its staggering capacity. For now though, our Brain Control series explores what we do know about the brain's command of ...

Brain's hippocampus helps fill in the blanks of language

September 20, 2016

A new study shows that when you finish your spouse's sentences or answer a fill-in-the-blank question, you're engaging the brain's relay station for memories, an area that until now was largely neglected by scientists studying ...

The brain clock that keeps memories ticking

May 30, 2016

Just as members of an orchestra need a conductor to stay on tempo, neurons in the brain need well-timed waves of activity to organize memories across time. In the hippocampus—the brain's memory center—temporal ordering ...

Recommended for you

Hormone that controls maturation of fat cells discovered

October 25, 2016

Scientists at the Stanford University School of Medicine have discovered a hormone that controls the first step in the maturation of fat cells. Its actions help explain how high-fat diets, stress and certain steroid medications ...

The tale of the bats, dark matter and a plastic surgeon

October 25, 2016

What happens when a plastic surgeon meets a bat expert zoologist and a paleobiologist? No, it's not a strange Halloween story about spooky bat dinosaurs but rather, a story about a new discovery about bats which may unlock ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.