Brain stimulation improves dexterity

October 27, 2008

Applying electrical stimulation to the scalp and the underlying motor regions of the brain could make you more skilled at delicate tasks. Research published today in the open access journal BMC Neuroscience shows that a non-invasive brain-stimulation technique, transcranial direct current stimulation (tDCS), is able to improve the use of a person's non-dominant hand.

Drs. Gottfried Schlaug and Bradley Vines from Beth Israel Deaconess Medical Center and Harvard Medical School, tested the effects of using tDCS over one side or both sides of the brain on sixteen healthy, right-handed volunteers, as well as testing the effect of simply pretending to carry out the procedure. The volunteers were not aware of which of the three procedures they were receiving. The test involved using the fingers of the left hand to key in a series of numbers displayed on a computer screen.

The results were striking; stimulating the brain over both the right and left motor regions ('dual hemisphere' tDCS) resulted in a 24% improvement in the subjects' scores. This was significantly better than stimulating the brain only over one motor region or using the sham treatment (16% and 12% improvements, respectively).

tDCS involves attaching electrodes to the scalp and passing a weak direct current through the scalp and skull to alter the excitability of the underlying brain tissue. The treatment has two principal modes depending on the direction in which the current runs between the two electrodes. Brain tissue that underlies the positive electrode (anode) becomes more excitable and the reverse is true for brain tissue that underlies the negative electrode (cathode). No relevant negative side effects have been reported with this type of non-invasive brain stimulation. It is not to be confused with electroconvulsive therapy, which uses currents around a thousand times higher.

According to Schlaug, "The results of our study are relevant to clinical research on motor recovery after stroke. They point to the possibility that stimulating both sides of the brain simultaneously, using the effects of the direct current to block unwanted effects of one motor region while using the opposite effects of the direct current treatment on the other motor region to enhance and facilitate the function of that motor region might catalyze motor recovery".

Source: BioMed Central

Explore further: Can a brain-computer interface convert your thoughts to text?

Related Stories

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...

How the brain responds to choices

October 7, 2016

Choices, it is commonly understood, lead to action—but how does this happen in the brain? Intuitively, we first make a choice between the options. For example, when approaching a yellow traffic light, we need to decide ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.