Been there, done that: Brain mechanism predicts ability to generalize

October 22, 2008

A new study reveals how the brain can connect discrete but overlapping experiences to provide a rich integrated history that extends far beyond individually experienced events and may help to direct future choices. The research, published by Cell Press in the October 23rd issue of the journal Neuron, also explains why some people are good at generalizing from past experience, while others are not.

Decisions are often guided by drawing on past experiences, perhaps by generalizing across discrete events that overlap in content. However, how such experiences are integrated into a unified representation is not clear, and fundamental questions remain regarding potential underlying brain mechanisms. It is likely that such mechanisms involve the hippocampus, a brain structure closely linked with learning and memory. The midbrain may also play a role, as its projections modulate activity in the hippocampus, and activity in both regions has been shown to facilitate encoding of individual episodes.

Dr. Daphna Shohamy from the Department of Psychology at Columbia University was interested in examining how past experiences might be integrated within the brain to create generalizations that guide future decisions. "We hypothesized that generalization stems from integrative encoding that occurs while experiencing events that partially overlap with previously encoded events and that such integrative encoding depends on both the hippocampus and midbrain dopamine regions. Further, we anticipated that greater hippocampal-midbrain engagement during integrative encoding enables rapid behavioral generalization in the future," offers Dr. Shohamy.

Dr. Shohamy and her collaborator, Dr. Anthony Wagner from the Department of Psychology at Stanford University, used functional magnetic resonance imaging to study participants engaged in an associative learning and generalization task. They found that activity in the hippocampus and midbrain during learning predicted generalization and observed a cooperative interaction between the hippocampus and the midbrain during integrative encoding.

"By forming a thread that connects otherwise separate experiences, integrative encoding permits organisms to generalize across multiple past experience to guide choices in the present," explains Dr. Shohamy. "In people who generalize successfully, the brain is constantly building links across separate events, creating an integrated memory of life's episodes. For others, although the brain may accurately remember each past event, this integration does not occur, so that when confronted with a new situation, they are unable to flexibly apply what they learned in the past."

Source: Cell Press

Explore further: When neurons are 'born' impacts olfactory behavior in mice

Related Stories

When neurons are 'born' impacts olfactory behavior in mice

December 7, 2016

New research from North Carolina State University shows that neurons generated at different life stages in mice can impact aspects of their olfactory sense and behavior. The work could have implications for our understanding ...

What can Google tell us about 'the memory web' in the brain?

November 15, 2016

A new study by researchers from the Centre for Systems Neuroscience at the University of Leicester, in collaboration with the University of California Los Angeles, has helped to untangle 'the memory web' by shedding light ...

Active and inactive cells in the brain's memory system

November 15, 2016

For the first time, Tübingen neuroscientists were able to differentiate between active and inactive cells in the brain morphologically, i.e. based on the cells' structure. Investigating granule cells in the rat's brain, ...

Power outage in the brain may be source of Alzheimer's

November 7, 2016

On Nov. 25, 1901, a 51-year-old woman is admitted to a hospital in Frankfurt, Germany, displaying a bizarre constellation of symptoms. Her behavior is erratic. She shows signs of paranoia as well as auditory hallucinations, ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.