Mitochondria could be a target for therapeutic strategy for Alzheimer's disease patients

November 5, 2008

A study in the Sept. 21 on-line edition of Nature Medicine describes the function and interaction of a critical molecule involved in cell death in Alzheimer's disease patients. These new findings reveal that blocking this molecule, called Cyclophilin D (CypD), and development of surrounding mitochondrial targets may be viable therapeutic strategies for the prevention and treatment of Alzheimer's disease, according to Shi Du Yan, Ph.D., professor of clinical pathology in the Department's of Pathology and Surgery and in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at Columbia University Medical Center, who led the multi-center research.

This paper strengthens the concept that mitochondrial permeability pores may be central in mitochondrial and neuronal malfunction relevant to Alzheimer disease. Dr. Yan and her colleagues offer new insights into the mechanism underlying amyloid beta (Aβ)-mediated mitochondrial stress through an interaction with CypD, which is linked to synaptic plasticity and learning/memory. Importantly, these findings may help explain the mechanism of action of a medication already in use in clinical trials.

Mitochondria, the microscopic parts found outside the nucleus of the cell that produce a cell's energy, are central players in mediating neuronal stress relevant to the pathogenesis or development of neurodegenerative diseases such as Alzheimer's disease. Mitochondrial dysfunction, or a problem with the cellular exchange of energy, is an early event observed in Alzheimer's disease. Recent studies have provided substantial evidence that mitochondria serve as direct targets for amyloid beta (Aβ) protein mediated neuronal toxicity. The observations that Aβ progressively accumulates in cortical mitochondria from Alzheimer's disease patients and in brains from transgenic Alzheimer's disease type mouse models suggest the role of mitochondrial Aβ in the pathogenesis or development of the disease. This Nature Medicine study describes how this mitochondrial process may be linked to synaptic failure in Alzheimer's disease.

The study provides new insights into the mechanism underlying mitochondrial Aβ-mediated and synaptic stress that links to the mitochondrial permeability transition pore (mPTP), an opening that leads to cell death for those with Alzheimer's. Mitochondrial permeability transition pore causes mitochondrial swelling, outer membrane rupture and release of cell death mediators and enhances production of reactive oxygen species (ROS). Cyclophilin D (CypD), a type of enzyme called a prolyl isomerase that is located within the mitochondrial matrix, is an integral part in the formation of the mitochondrial permeability transition pore (mPTP), leading to cell death. Up until now, however, the role of CypD in Alzheimer's disease has not been elucidated.

In this paper, Dr. Yan and colleagues demonstrate that CypD interacts with Aβ peptide within the mitochondria of Alzheimer's disease patients and a transgenic mouse model of Alzheimer's disease. The cortical mitochondria isolated from Alzheimer's disease mice lacking CypD are resistant to Aβ- and Ca2+-induced mitochondria swelling and permeability transition, increase calcium buffering capacity, and attenuate generation of mitochondrial ROS. Furthermore, CypD-deficient neurons protect against Aβ- and oxidative stress-induced cell death. Importantly, deficiency of CycD greatly improved the learning, memory, and synaptic function of an Alzheimer's disease mouse model and alleviated Aβ-mediated reduction of long term potentiation (LTP). Thus, the CypD/Aβ-mediated mitochondrial permeability transition pore directly links to the cellular and synaptic perturbation relevant to the pathogenesis of Alzheimer's disease.

Source: Columbia University Medical Center

Explore further: Power outage in the brain may be source of Alzheimer's

Related Stories

Power outage in the brain may be source of Alzheimer's

November 7, 2016

On Nov. 25, 1901, a 51-year-old woman is admitted to a hospital in Frankfurt, Germany, displaying a bizarre constellation of symptoms. Her behavior is erratic. She shows signs of paranoia as well as auditory hallucinations, ...

New worm strain to facilitate study of Alzheimer's disease

October 25, 2016

Researchers from Yale-NUS College have partnered with researchers from the National University of Singapore (NUS) and SingHealth Group to develop a novel Caenorhabditis elegans (C. elegans) worm strain which expresses an ...

Can some types of fat protect us from brain disease?

September 8, 2016

An intriguing finding in nematode worms suggests that having a little bit of extra fat may help reduce the risk of developing some neurodegenerative diseases, such as Huntington's, Parkinson's and Alzheimer's diseases.

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.