Scientists see the light: How vision sends its message to the brain

January 29, 2009

Scientists have known for more than 200 years that vision begins with a series of chemical reactions when light strikes the retina, but the specific chemical processes have largely been a mystery. A team of researchers from the United States and Switzerland, have she new light on this process by "capturing" this chemical communication for future study. This research, published in the February 2009 issue of The FASEB Journal , may lead to the development of new treatments for some forms of blindness and vision disorders.

At the center of the discovery is the signaling of rhodopsin to transducin. Rhodopsin is a pigment in the eye that helps detect light. Transducin is a protein (sometimes called "GPCR") which ultimately signals the brain that light is present. The researchers were able to "freeze frame" the chemical communication between rhodopsin and transducin to study how this takes place and what goes wrong at the molecular level in certain disorders.

According to Krzysztof Palczewski, a senior scientist involved in the research, "The results may have important implications for discovery and development of more specific medicines to treat GPCR-linked dysfunction and disease." Examples of health problems involving GPCR dysfunction include blindness, diabetes, allergies, depression, cardiovascular defects and some forms of cancer.

To make their discovery, scientists isolated rhodopsin/transducin directly from bovine retinas. These membranes were suspended in solution and exposed to light to start the chemical signaling process. After light exposure, any contaminating proteins were removed, and the remaining rhodopsin and transducin "locked" in their chemical communication were removed using a centrifuge. In addition to helping scientists understand how vision begins, this research may also impact disorders affecting heart beat, blood pressure, memory, pain sensation, and infection response because it is believed that they are regulated by similar chemical communications involving similar proteins.

"Until now, scientists have been in the dark when it comes to exactly how vision begins. This exciting new work shows how light becomes a chemical signal to the brain," said Gerald Weissmann, Editor-in-Chief of The FASEB Journal. "Now that we see the light, so to speak, entirely new types of custom-fit become possible for a wide range of diseases."

A recent and related article in The FASEB Journal on milestones in photochemistry is available at www.fasebj.org/cgi/content/full/22/12/4038 .

Source: Federation of American Societies for Experimental Biology

Explore further: Five things you didn't know about epilepsy

Related Stories

Five things you didn't know about epilepsy

November 8, 2016

Though it's the fourth most common neurological disease in the United States—affecting 1 in 26 people—epilepsy is also one of the most stigmatized. Hear the word "seizure," and you might picture a dramatic scene: A person's ...

Eye cells may use math to detect motion

March 7, 2016

Our eyes constantly send bits of information about the world around us to our brains where the information is assembled into objects we recognize. Along the way, a series of neurons in the eye uses electrical and chemical ...

Catching proteins in the act

August 23, 2016

Some of the fastest processes in our body run their course in proteins activated by light. The protein rhodopsin sees to it that our eyes can rapidly take in their ever-changing surroundings. Free-electron X-ray lasers such ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.