Internal choices are weaker than those dictated by the outside world

February 11, 2009

The underlying sense of being in control of our own actions is challenged by new research from UCL (University College London) which demonstrates that the choices we make internally are weak and easily overridden compared to when we are told which choice to make.

The research, which is published today in Cerebral Cortex, is one of the first neuroscientific studies to look at changing one's mind in situations where the initial decision was one's own 'free choice'. Free choices can be defined as actions occurring when external cues are largely absent - for example, deciding which dish to choose from a restaurant menu.

The researchers asked study participants to choose which of two buttons they would press in response to a subsequent signal, while their brain activity was recorded using EEG (electroencephalogram). Some choices were made freely by the volunteers and other choices were instructed by arrows on a screen in front of them. The volunteers' choices were occasionally interrupted by a symbol asking them to change their mind, after they had made their choice, but before they had actually pressed the button.

First author Stephen Fleming, UCL Institute of Neurology, said: "When people had chosen for themselves which action to make, we found that the brain activity involved in changing one's mind, or reprogramming these 'free' choices was weak, relative to reprogramming of choices that were dictated by an external stimulus. This suggests that the brain is very flexible when changing a free choice - rather like a spinning coin, a small nudge can push it one way or the other very easily.

"The implication is that, despite our feelings of being in control, our own internal choices are flexible compared to those driven by external stimuli, such as a braking in response to a traffic light. This flexibility might be important - in a dynamic world, we need to be able to change our plans when necessary."

Professor Patrick Haggard, UCL Institute of Cognitive Neuroscience, added: "Our study has two implications for our understanding of human volition. First, our brains contain a mechanism to go back and change our mind about our choices, after a choice is made but before the action itself. Our internal decisions are not set in stone, but can be re-evaluated right up to the last moment. Second, changing an internal choice in this way seems to be easier than changing a choice guided by external instructions.

"We often think about our own internal decisions as having the strength of conviction, but our results suggest that the brain is smart enough to make us flexible about what we want. The ability to flexibly adjust our decisions about what we do in the current situation is a major component of intelligence, and has a clear survival value."

More information: The paper 'When the Brain Changes its Mind: Flexibility of Action Selection in Instructed and Free Choices' is published online ahead of print in Cerebral Cortex, doi:10.1093/cercor/bhn252.

Source: University College London

Explore further: Genetic alterations in treatment-resistant metastatic breast cancer found to be distinct from those in primary tumors

Related Stories

Four nations map course to carbon-free economies

November 18, 2016

When it comes to purging fossil fuels from the global economy by mid-century—our only hope of staving off catastrophic climate change—it turns out that you can't get there from here without a good map.

2016-2017 Airline Food Study results revealed

December 1, 2016

There will more than 38 million passengers traveling during this holiday season. Knowing what are the 'best' and 'worst' choices is a valuable tool for any traveler, so Dr. Charles Platkin, the director of the NYC Food Policy ...

How a Trump administration could shape the internet

December 2, 2016

Under a President Donald Trump, cable and phone companies could gain new power to influence what you do and what you watch online—not to mention how much privacy you have while you're at it.

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.