The matchmaker that maintains neuronal balance

March 25, 2009

A protein identified by researchers at Baylor College of Medicine helps maintain a critical balance between two types of neurons, preventing motor dysfunction in mammals.

In a report in the current edition of the journal Neuron, Dr. Soo-Kyung Lee, assistant professor of molecular and , molecular and cellular biology and neuroscience at BCM, and her colleagues describe the LMO4 as critical in allowing progenitor cells to choose their fates - between the V2a that are excitatory and the V2b neurons that are inhibitory. Excitatory neurons encourage the activity of neurons on which they act. Inhibitory neurons act in an opposite manner.

In previous work, Lee and members of her laboratory identified the double-barreled or dimerized complex containing the protein Lhx3 that pushes the progenitor cells to become V2a excitatory neurons. In this paper, she notes the LMO4 not only forms a complex that binds to DNA and promotes the choice of cell fate to the V2b inhibitory neurons, it also blocks the path to becoming a V2a excitatory neuron.

Because LMO4 cannot bind directly to DNA, it plays instead, building a complex of DNA-binding components that allow the cells to choice to become inhibitory neurons.

"These individual DNA-binding components are present in the neurons," she said. "But they do not have the ability to find their DNA partners. LMO4 'glues' these proteins together and makes them functional."

She and her colleagues have demonstrated these both in the laboratory and in mice bred to lack LMO4. Without the protein, the balance becomes tipped in favor of excitatory neurons, which would result in .

Others who took part in this research include Kaumudi Joshi, Seunghee Lee, Bora Lee and Jae W. Lee, all of BCM.

Lee credits graduate student Kaumdi Joshi with much of the laboratory work in accomplishing this understanding.

More information:

Source: Baylor College of Medicine (news : web)

Related Stories

Recommended for you

Placebo sweet spot for pain relief found in brain

October 27, 2016

Scientists have identified for the first time the region in the brain responsible for the "placebo effect" in pain relief, when a fake treatment actually results in substantial reduction of pain, according to new research ...

Team announces mapping of the mouse cortex in 3-D

October 27, 2016

The Allen Institute for Brain Science has completed the three-dimensional mapping of the mouse cortex as part of the Allen Mouse Common Coordinate Framework (CCF): a standardized spatial coordinate system for comparing many ...

Neuro chip records brain cell activity

October 26, 2016

Brain functions are controlled by millions of brain cells. However, in order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.