Strategy discovered for fighting persistent bacterial infections

March 23, 2009

Researchers at National Jewish Health have discovered a promising strategy for destroying the molecular scaffolding that can make Pseudomonas bacterial infections extremely difficult to treat in cystic fibrosis patients, wearers of contact lenses, and burn victims. Jerry Nick, MD, Associate Professor of Medicine at National Jewish Health, and his colleagues report in the April 2009 issue of The Journal of Medical Microbiology that a long string of aspartic acid molecules disrupts the molecular bonds that hold together the structure supporting Pseudomonas biofilms.

"Once a bacterial community forms a biofilm it becomes much more difficult to treat," said Dr. Nick. "We think our discovery will pave the way for more effective treatment of Pseudomonas aeruginosa infections, which can wreak so much havoc in cystic ."

Biofilms are a form of bacterial colony in which attach to and live within an , where medications and the immune system have difficulty reaching them. As a result, these infections become very difficult to treat effectively. Pseudomonas biofilms form and cause lung damage in most patients as they grow older. Pseudomonas biofilms can also form on the corneas of contact lens wearers, and in wounds and burns.

Dr. Nick and his colleagues previously showed that formation of Pseudomonas aeruginosa biofilms is enhanced by the remains of known as neutrophils, which accumulate in vast numbers to the site of infection, then die and spill their contents. Pseudomonas builds the extracellular matrix from neutrophils' DNA, the actin structural molecules, and histones, the molecules around which DNA normally wraps inside the cell nucleus.

DNase, an enzyme that breaks long strands of DNA, is already used to help thin the thick mucus that plagues cystic fibrosis patients. Dr. Nick believes it may also break up the Pseudomonas biofilms. But it is clearly not enough, because Pseudomonas biofilms remain one of the most vexing problems for cystic fibrosis patients as they age.

Dr. Nick and his colleagues thought that a negatively charged molecule might help break up the biofilms by bonding to the positively charged histones and preventing them from contributing to the molecular scaffolding, and by breaking apart actin bundles. So, they added aspartic , long strings of the negatively charged molecules, to cell cultures of Pseudomonas aeruginosa and neutrophils.

In one experiment, a 48-hour-old Pseudomonas biofilm was reduced by 42 percent when exposed to DNase for 10 minutes. The aspartic acid polymer alone could not reduce the density of the 48-hour-old biofilm. But when both DNase and the aspartic acid polymer were applied to the biofilm, it was reduced by 78 percent. Several other experiments with varying doses and exposure times of DNase and the aspartic acid polymer on different Pseudomonas strains and biofilms had similar results.

"The DNase and aspartic acid worked together synergistically to break down the biofilm," said Quinn Parks, PhD, lead author on the research paper. "We are now experimenting with different aspartic acid polymers to find the most effective ones. This may be an important new therapeutic strategy for combating Pseudomonas infections."

Source: National Jewish Medical and Research Center

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.