Stress signals link pre-existing sickness with susceptibility to bacterial infection

July 28, 2009

Mitochondrial diseases disrupt the power generating machinery within cells and increase a person's susceptibility to bacterial infection, particularly in the lungs or respiratory tract. A new study published in Disease Models & Mechanisms (DMM), shows that infection with the pneumonia causing bacteria Legionella, is facilitated by an increased amount of a signaling protein that is associated with mitochondrial disease.

Patients with exhibit a wide range of symptoms including diabetes, blindness, deafness, stroke-like episodes, epilepsy, ataxia, muscle weakness and kidney disease. The metabolic abnormalities that cause these effects also induce a stress signal intended to help the body overcome its energy deficit. The stress-signal induces the production of more mitochondria, the energy generating 'powerplants' of the body, in the hopes that more mitochondria will result in a better power supply. Researchers now show that the stress-signal associated with mitochondrial disease facilitates the growth and reproduction of the lung-infecting bacteria, Legionella.

with mitochondrial disease increase their production of a signaling protein called AMP-activated protein kinase (AMPK), to promote the generation of more energy producing mitochondria. Infectious bacteria, like Legionella, target the mitochondria and might use them to supplement their own needs and survival requirements. By manipulating AMPK levels, scientists were able to directly influence the ability of bacteria to replicate inside of the single-celled organism, Dictyostelium.

Striking similarities that exist between simple organisms like Dictyostelium and humans allow scientists to use them to understand human disease. Dictyostelium is a free-living amoeba whose rapid movements make it useful to study motility and energy regulation, and in this case, the association between energy regulation and susceptibility to infection. Like humans, Dictyostelium can be infected by Legionella and quickly responds by producing a host of metabolism-associated proteins. Another similarity between humans and Dictyostelium is that both use AMPK as an internal sensor to coordinate energy synthesis with energy needs. However, unlike humans, researchers can infect Dictyostelium with germs like Legionella in a controlled environment and determine the influence of various parameters on the course of infection.

More information: The report titled 'Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased cells' was written by Lisa Francione, Paige K. Smith, Sandra L. Accari, Paul B. Bokko and Paul Fisher at La Trobe Univeristy in Australia, Salvatore Bozzaro at University of Turin in Italy and Phillip E Taylor and Peter L. Beech at Deakin University in Australia. The study is published in the September/October 2009 issue of the new research journal, Disease Models & Mechanisms (DMM), dmm.biologists.org/ .

Source: The Company of Biologists (news : web)

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.