Iron regulates the TLR4 inflammatory signaling pathway

October 5, 2009

Iron is a micronutrient essential to the survival of both humans and disease-causing microbes. Changes in iron levels therefore affect the severity of infectious diseases. For example, individuals with mutations in their HFE gene have exceedingly high levels of iron in their liver and are more susceptible to infection with a number of microbes.

Exactly how changes in iron levels affect susceptibility to infectious disease has not been clearly determined, although it has been observed that mice lacking Hfe mount an impaired following oral infection with the bacterium that causes salmonella.

Bobby Cherayil and colleagues, at Massachusetts General Hospital, Charlestown, have now defined a molecular mechanism underlying the impaired inflammatory response to oral infection with the bacterium that causes salmonella in mice lacking Hfe.

Specifically, these mice have low levels of free iron in known as macrophages and this impairs signaling along a pathway required for sensing the presence of bacteria such as the one that causes salmonella and triggering an inflammatory response (the TLR4/TRAM/TRIF pathway).

As drugs that mimic the altered iron distribution associated with Hfe deficiency reduced intestinal damage associated with infection with the salmonella-causing bacterium and reduced intestinal damage in a noninfectious inflammatory situation, the authors suggest that local manipulation of iron levels might provide a new approach to controlling inflammation.

More information: View this article at: www.jci.org/articles/view/39939?key=4fae98a76d788644e09d

Source: Journal of Clinical Investigation

Related Stories

Recommended for you

Gut microbe movements regulate host circadian rhythms

December 1, 2016

Even gut microbes have a routine. Like clockwork, they start their day in one part of the intestinal lining, move a few micrometers to the left, maybe the right, and then return to their original position. New research in ...

Reactivation of embryonic genes leads to muscle aging

December 1, 2016

Developmental genes and pathways strictly regulate embryogenesis. The process is strongly driven by so-called Hox-genes. Now, researchers from the Leibniz Institute on Aging (FLI) in Jena, Germany, can show that one of these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.