Identified: Switch that turns on allergic disease in people

January 20, 2010

A new study in human cells has singled out a molecule that specifically directs immune cells to develop the capability to produce an allergic response. The signaling molecule, called thymic stromal lymphopoietin (TSLP), is key to the development of allergic diseases such as asthma, atopic dermatitis (eczema) and food allergy.

The study team, led by Yong-Jun Liu, M.D., Ph.D., at the University of Texas M.D. Anderson Cancer Center, Houston, focused on , immune cells that initiate the primary immune response. Dendritic cells come into contact with other known as T cells, causing them to develop into different subsets of T cells, including helper 1 (Th1) and helper 2 (Th2) cells. These T-cell subsets are involved in protective immune responses, but the can also drive an allergic response. Until now, it was not known how dendritic cells induced T cells to become Th2 cells.

The investigators used dendritic cells isolated from the blood of healthy donors and found that the binding of TSLP to these cells activates a distinct set of signaling pathways within the cells. As a result, the dendritic cells produce messenger molecules that act on the T cells, causing them to develop into Th2 cells.

The study identifies TSLP as a switch that causes the development of the allergic response in people and suggests that this molecule may be a potential to treat and prevent allergic diseases.

Dr. Liu and his colleagues are supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The investigators are with the Asthma and Cooperative Research Centers program, now in its fourth decade of continuous funding as the cornerstone of NIAID's asthma and allergy research portfolio.

More information: K Arima et al. Distinct signal codes generate dendritic cell functional plasticity. Science Signaling. DOI:10.1126/scisignal.2000567

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.