Nano-motors facilitate communication between brain cells

January 22, 2010
Nano-motors facilitate communication between brain cells
Dr Kittler's research is published in the 14 January issue of Neuron journal.

(PhysOrg.com) -- MRC-funded scientists led by Dr Josef Kittler (University College London Neuroscience) have identified how nano-sized motors in nerve cells help to regulate the balance of communication in the brain.

The findings may also help to explain why communication between nerve cells is disrupted in Huntington’s disease, leading to altered electrical behaviour of nerve cells in this disease.

send signals to each other by releasing chemicals at specialized junctions between the cells called synapses. One key , called GABA, acts on special proteins (GABA receptors) to generate inhibition, which stops the from becoming too excitable. In a paper published this week in the journal Neuron, Dr Kittler reveals how a protein named HAP1, working together with molecular , helps to guide the GABA receptors to the synapses.

Alison Twelvetrees first author on the study, said: “This work advances our understanding of how the GABA receptor proteins are delivered to synapses to control the level of inhibition in the brain. We show that the receptors are transported to synapses by small nanometer-sized motors, on intracellular protein tracks called microtubules”.

In the inherited neurological disorder Huntington’s disease, a mutation in the gene for the protein huntingtin leads to the production of a mutant huntingtin protein. This can disrupt several aspects of normal nerve cell function, including the function of the synapses. This altered function of synapses is likely to be an important contributor to the progression of the disorder.

Lead author Dr Josef Kittler said: “Our work shows how the transport of the GABA receptors to synapses is disrupted by the protein that is mutated in Huntington’s disease, and adds another piece to the complex puzzle of how synaptic communication in the brain gets disrupted in this disorder”.

The research is a good example of how understanding the way that tiny, but crucial, cell components such as synapses function contributes to understanding problems that affect whole body systems.

More information:
-- For more information about Dr Kittler’s research, please visit his webpage.
-- Research paper in Neuron: www.cell.com/neuron/fulltext/S0896-6273(09)00997-0

Related Stories

Recommended for you

Honeybee memories: Another piece of the Alzheimer's puzzle?

December 8, 2016

A breakdown of memory processes in humans can lead to conditions such as Alzheimer's and dementia. By looking at the simpler brain of a honeybee, new research published in Frontiers in Molecular Neuroscience, moves us a step ...

Knowing one's place in a social hierarchy

December 7, 2016

When you start a new job, it's normal to spend the first day working out who's who in the pecking order, information that will come in handy for making useful connections in the future. In an fMRI study published December ...

Deep brain stimulation may not boost memory

December 7, 2016

Deep brain stimulation (DBS) of areas in the brain known to be involved in making memories does not improve memory performance, according to a study by Columbia University researchers published December 7 in Neuron. The study ...

Brain activity may predict risk of falls in older people

December 7, 2016

Measuring the brain activity of healthy, older adults while they walk and talk at the same time may help predict their risk of falls later, according to a study published in the December 7, 2016, online issue of Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.