Cord blood-derived CD133+ cells improve cardiac function after myocardial infarction

February 3, 2010

Researchers at the Pontifícia Universidade Católica do Paraná and Instituto Carlos Chagas have evaluated the therapeutic potential of purified and expanded CD133+ cells human umbilical cord blood (HUCB)-derived in treating myocardial infarction by intramyocardially injecting them into a rat model. Patients who have high cardiovascular risks have fewer endothelial progenitor cells (EPCs) and their EPCs exhibit greater in vitro senescence. HUCB-derived EPCs could be an alternative to rescue impaired stem cell function in the sick and elderly.

The results, which appear in the January 2010 issue of Experimental Biology and Medicine, show that expanded ex vivo exhibited increased expression of mature endothelial cells markers and formed tubule-like structures in vitro. Only the expanded cells expressed VEGF mRNA.

Cells were expanded up to 70-fold during 60 days of culture, and they retained their functional activity. A significant improvement was observed in left ventricular ejection fraction for purified and expanded cells. In summary, CD133+ cells were purified from HUCB, expanded in vitro without losing their biological activity, and both purified and expanded cells showed promising results for use in cellular cardiomyoplasty. However, further pre-clinical testing should be performed to determine whether expanded CD133+ cells have any clinical advantages over purified CD133+ cells.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "This study suggests that the use of human umbilical cord blood-derived purified and expanded CD133+ cells may show promise for use in cellular cardiomyoplasty. This finding needs subsequent pre-clinical testing but may prove to be very important in future treatments".

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.