Scientists find new form of prion disease that damages brain arteries

March 5, 2010

National Institutes of Health (NIH) scientists investigating how prion diseases destroy the brain have observed a new form of the disease in mice that does not cause the sponge-like brain deterioration typically seen in prion diseases. Instead, it resembles a form of human Alzheimer's disease, cerebral amyloid angiopathy, that damages brain arteries.

The study results, reported by NIH scientists at the National Institute of Allergy and Infectious Diseases (NIAID), are similar to findings from two newly reported human cases of the Gerstmann-Straussler-Scheinker syndrome (GSS). This finding represents a new mechanism of disease brain damage, according to study author Bruce Chesebro, M.D., chief of the Laboratory of Persistent Viral Diseases at NIAID's Rocky Mountain Laboratories.

Prion diseases, also known as transmissible spongiform encephalopathies, primarily damage the brain. Prion diseases include or in cattle; scrapie in sheep; sporadic Creutzfeldt-Jakob disease (CJD), variant CJD and GSS in humans; and chronic wasting disease in deer, elk and moose.

The role of a specific cell anchor for is at the crux of the NIAID study. Normal prion protein uses a specific molecule, glycophosphoinositol (GPI), to fasten to host cells in the brain and other organs. In their study, the NIAID scientists genetically removed the GPI anchor from study mice, preventing the prion protein from fastening to cells and thereby enabling it to diffuse freely in the fluid outside the cells.

The scientists then exposed those mice to infectious scrapie and observed them for up to 500 days to see if they became sick. The researchers documented signs typical of prion disease including weight loss, lack of grooming, gait abnormalities and inactivity. But when they examined the brain tissue, they did not observe the sponge-like holes in and around typical of prion disease. Instead, the brains contained large accumulations of prion protein plaques trapped outside blood vessels in a disease process known as cerebral amyloid angiopathy, which damages arteries, veins and capillaries in the brain. In addition, the normal pathway by which fluid drains from the brain appeared to be blocked.

Their study, Dr. Chesebro says, indicates that prion diseases can be divided into two groups: those with plaques that destroy brain blood vessels and those without plaques that lead to the sponge-like damage to nerve cells. Dr. Chesebro says the presence or absence of the prion protein anchor appears to determine which form of disease develops.

The new mouse model used in the study and the two new human GSS cases, which also lack the usual prion protein cell anchor, are the first to show that in prion diseases, the plaque-associated damage to blood vessels can occur without the sponge-like damage to the brain. If scientists can find an inhibitor for the new form of prion disease, they might be able to use the same inhibitor to treat similar types of damage in Alzheimer's disease, Dr. Chesebro says.

More information: B Chesebro et al. Fatal transmissible amyloid encephalopathy: A new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathogens 6(3): e1000800. DOI:10.1371/journal.ppat.1000800 (2010).

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Mar 05, 2010
The good news is, maybe we won't have to wait to either be cooked or frozen out, as the ever-increasing number of emergent, exceptionally lethal diseases may get us first. We can't even seem to find a cure for TB or Malaria- so how can we expect our Med/Pharm combine to put a stop to any of the others?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.