Researchers identify key molecular step to fighting off viruses

April 21, 2010

UT Southwestern Medical Center researchers have determined how a protein that normally latches onto molecules inside cells and marks them for destruction also gives life to the body's immune response against viruses.

The researchers discovered that a certain form of the "death" ubiquitin interacts with another protein, called RIG-I, but does not mark it for destruction. Instead, this form of ubiquitin binds to and activates RIG-I, which is known to trigger the body's when a virus invades a cell.

Dr. Zhijian "James" Chen, professor of molecular biology at UT Southwestern, is senior author of the study, which is available online and in the journal Cell.

Dr. Chen and his colleagues reconstituted key elements of the human innate immune system in laboratory test tubes and found ubiquitin forms a unique chain-like structure that associates with RIG-I before RIG-I can get to work fighting viruses. The innate immune system is the body's first generic response against invading pathogens.

"Activation of RIG-I is the first line of our immune defenses against ," said Dr. Chen, an investigator for the Howard Hughes Medical Institute at UT Southwestern. "Understanding how it comes to life is a key step in developing new approaches to antiviral therapies. Having this test-tube system could help us identify substances that enhance the body's antiviral immunity."

Dr. Chen said his team's experiments mark the first time innate immunity has been recapitulated in a test tube. The findings provide one of the missing pieces in the complex puzzle of how the body fights off infection, he added.

Dr. Chen is now focusing on how activated RIG-I interacts with another protein called MAVS, also essential for .

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.