Biomedical Researchers Develop Device to Predict Wound Healing

May 25, 2010

(PhysOrg.com) -- The new device can change the current landscape of chronic wound management.

Complex wounds affect more patients in the United States than heart attack and stroke combined, and five to seven million Americans with complex wounds account for over $20 billion in healthcare expenditures. About 150,000 amputations a year result from complex wounds, while about 80,000 are attributed to diabetes and . There are currently no established methods for early detection of wound healing, or for precise identification of healing progress. Wound size is the only accepted indicator despite its variability and the fact that is reflects only what is happening on the surface.

A new breakthrough device developed by researchers can change the current landscape of chronic wound management. Researchers at Drexel University’s School of Biomedical Engineering, Science and Health Systems developed a prototype device that measures the level of oxygenated and deoxygenated within and under a wound and compares it to a control/non-wound site of the same patient. Based on a human study at the Wound Clinic of the Drexel College of Medicine, the time course of oxygenated hemoglobin change was found to be a strong indicator of wound healing.

Diffuse Near-Infrared Spectroscopy allows tissue to be non-invasively analyzed by measuring its optical absorption and scattering coefficients. A “diagnostic window” exists at near (650 -900 nm) allowing determination of tissue at significant depths, because light is able to penetrate several centimeters into tissue due to low absorption of hemoglobin. The absorption spectra of oxy-hemoglobin and deoxy-hemoglobin are distinct at near-infrared wavelengths and with proper instrumentation the absolute concentrations of each can be determined.

A device prototype has been developed and tested over the course of several years. The device is controlled by software from a laptop computer and can move from patient to patient in a busy clinical setting. Measurements can be taken at any spot within or around the wound and take seconds to complete. Results are displayed on the computer screen almost instantly following the measurement. Improved prototypes are being designed. In its final stages the device will become more portable.

Advantages of the Drexel technology:

• Fast quantitative method for characterizing diabetic and pressure ulcers.
• Quantitative assessment of ischemic tissue in a broad variety of clinical applications.
• Ability to predict due to therapy at least 50 percent earlier (four weeks as opposed to 8 weeks or more) compared to conventional methods.

Funding for the project is supported through a Coulter Foundation Translational Research grant. The Coulter Foundation is a private, nonprofit foundation dedicated to supporting biomedical engineering translational research that addresses unmet health care needs.

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.