'Remote Control' for Cholesterol Regulation Discovered in Brain

June 6, 2010
Matthias Tschöp, MD

(PhysOrg.com) -- Circulation of cholesterol is regulated in the brain by the hunger-signaling hormone ghrelin, researchers say. The finding points to a new potential target for the pharmacologic control of cholesterol levels.

The animal study, led by Matthias Tschöp, MD, professor in the University of Cincinnati (UC) endocrinology division, appears online ahead of print Sunday, June 6, 2010, in .

"We have long thought that cholesterol is exclusively regulated through dietary absorption or synthesis and by the liver," says Tschöp. "Our study shows for the first time that cholesterol is also under direct 'remote control' by specific neurocircuitry in the central nervous system."

The hormone ghrelin inhibits the melanocortin 4 receptor (MC4R) in the and is important for the regulation of food intake and energy expenditure. Tschöp and his team found that increased levels of ghrelin in mice caused the animals to develop increased levels of blood-circulating cholesterol. This, the authors say, is due to a reduction in the uptake of cholesterol by the liver.

The research team next tested the effects of genetically deleting or chemically blocking MC4R in the . This test also yielded increased levels of cholesterol, suggesting that MC4R was the central element of the "remote control."

"We were stunned to see that by switching MC4R off in the brain, we could even make injected cholesterol remain in the blood much longer," says Tschöp, a researcher at UC's Metabolic Diseases Institute.

Cholesterol is a type of naturally occurring fat needed by the body, but too much cholesterol can lead to atherosclerosis, a buildup of plaque in the . There are two types of cholesterol in humans―HDL (high-density lipoprotein) and LDL (low-density lipoprotein). LDL is considered the "bad" kind of cholesterol responsible for buildup. HDL is the "good" kind that, in high levels, can prevent atherosclerosis.

Atherosclerosis can lead to heart attack. The American Heart Association estimates that a heart attack occurs every 34 seconds in the United States.

Due to the differences in the make-up of mice and human , Tschöp and his team say more work is needed before their studies could be directly applied to humans, but they say their finding adds to a growing body of evidence for the central nervous system's direct control over essential metabolic processes.

Related Stories

Recommended for you

Neuro chip records brain cell activity

October 26, 2016

Brain functions are controlled by millions of brain cells. However, in order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large ...

After blindness, the adult brain can learn to see again

October 25, 2016

More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration. The development of sophisticated prostheses or new light-responsive elements, ...

The current state of psychobiotics

October 25, 2016

Now that we know that gut bacteria can speak to the brain—in ways that affect our mood, our appetite, and even our circadian rhythms—the next challenge for scientists is to control this communication. The science of psychobiotics, ...

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 06, 2010
THIS IS HUGE!!!!! WOW. no doubt there is a billion dollar drug in the making.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.