Stem cells from fat may help heal bone

June 30, 2010

(PhysOrg.com) -- Wounded soldiers may one day be treated with stem cells from their own fat using a method under development at UC Davis.

Kent Leach, assistant professor of biomedical engineering, has already used the treatment in three racehorses. Now, with a $100,000 grant from the U.S. Army, he will begin testing it in rats.

The method employs a gel-like material to encourage from fat to regenerate damaged bone.

The stem cells have been shown to stimulate the growth of small blood vessels in developing bone, encouraging healing. The gel keeps the stem cells at the injury site; as the bone heals, the gel breaks down.

"Straight injection of stem cells has a limited effect," Leach said. "If we can localize the cells at the treatment site, the treatments should be more effective."

With Larry Galuppo, professor of veterinary medicine at UC Davis, Leach has already tested the technique in racehorses undergoing treatment for bone cysts at the UC Davis Veterinary Medical Teaching Hospital. Galuppo and his colleagues are treating most of the horses by injecting them with stem cells alone, but in three horses to date, they have used Leach's gel method. Results from those equine patients are still being assessed. The technique has not yet been tested in humans.

Using stem cells from a patient's own fat has two main advantages, Leach said. The stem cells have a better chance of succeeding and not being rejected by the body; and the main alternative, extraction from , can be painful, requires several days of recovery time, and is not feasible for severely injured or weakened patients.

"Stem cells from adipose tissue are an exciting alternative to stem cells from bone marrow or other tissues because we can isolate a large number, no matter what the patient’s condition is," Leach said.

Leach envisions that eventually, surgeons could extract from a patient, separate out the stem cells, mix them into the gel and inject the mixture directly into a fracture.

The team will test several compositions in rats to find one that yields the most rapid growth of new and resulting bone formation, using noninvasive imaging technologies.

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.