Mount Sinai pioneers new cardiac imaging device

August 16, 2010

Researchers from Mount Sinai School of Medicine have for the first time developed a way to visualize coronary artery plaques vulnerable to rupture using multi-color computed tomography (CT), an innovation that will lead to better and earlier diagnosis of cardiovascular disease. The data are published in the September issue of Radiology.

Ruptures of are the cause of nearly 70 percent of heart attacks. High density lipoproteins (HDL), the "good" cholesterol, are drawn to plaques vulnerable to rupture and remove them from the arterial wall. The Mount Sinai team harnessed HDL by encapsulating tiny gold particles within it and injected them into mice. By using a sophisticated multi-color CT scanner, the researchers were able to see the gold particles as the HDL was targeting macrophages, or the cells that cause inflammation in the arterial wall, therefore illuminating the location of the vulnerable plaques.

"The use of multi-color CT and gold nanoparticles to visualize plaque will revolutionize ," said the research team leader, Zahi A. Fayad, PhD, Professor of Radiology and Medicine and the Director of the Translational and Institute at Mount Sinai School of Medicine. "The acquisition of this technology and development of this method will help us improve cardiovascular disease diagnosis in our patients, furthering our commitment to translational research. We look forward to continuing our study of this technology in the clinical setting."

Conventional CT detectors provide a gray image of the artery being studied, and do not provide contrast to differentiate types and density of tissue. In addition to showing the impact of the gold particles, spectral CT can simultaneously distinguish calcium deposits and contrast agents used such as iodine, which is often used to identify stenoses, or the narrowing of arteries, informing the severity of atherosclerosis and . Mount Sinai is the first institution in the world to use this scanner, made by Phillips Medical Systems, in a pre-clinical setting.

"There is a significant unmet need for imaging technology that visualizes plaque vulnerable to rupture," said the lead author of the work, David Cormode, PhD, Postdoctoral Fellow, Translational and Molecular Imaging Institute, Mount Sinai School of Medicine. "The fact that the multi-color CT technique shows the , iodine and calcifications, provides us with a more complete picture of the nature of the atherosclerotic arteries."

Multi-color CT technology may also be beneficial in imaging other biological process and diseases, including cancer, kidney disease, and bowel diseases. The Mount Sinai team plans to continue studying the new scanner in additional animal studies and in humans.

"Mount Sinai has a decades-long history of making advances in cardiac imaging that have had a significant impact on the field and in patient care," said Valentin Fuster, MD, PhD, Director of Mount Sinai Heart, the Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, The Mount Sinai Medical Center. "As the first center in the world to pioneer this imaging method, we are leading the charge once more in improving diagnostic tools that lessen the potentially devastating impact of heart disease."

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.