Researchers identify new neurological deficit behind lazy eye

September 10, 2010

Researchers at New York University's Center for Neural Science have identified a new neurological deficit behind amblyopia, or "lazy eye." Their findings, which appear in the most recent issue of the Journal of Neuroscience, shed additional light on how amblyopia results from disrupted links between the brain and normal visual processing.

Amblyopia results from developmental problems in the brain. When the parts of the brain concerned with visual processing do not function properly, problems ensue with such visual functions as the perception of movement, depth, and fine detail. It is most prevalent neurological defect of vision in children and adults, affecting 1-3 percent of the population.

Previous research on amblyopia has largely focused on one aspect of visual processing—that in the primary visual cortex, or V1.

However, while abnormalities in V1 explain some amblyopic visual problems, they fail to account for the full range of losses suffered by those with amblyopia—including motion perception. With this in mind, the NYU researchers studied a brain area called MT, which has a well-established role in processing information about moving visual objects.

To do this, the researchers studied the visual processing of macaque monkeys, examining those who had normal vision and those whose vision was impaired by amblyopia. The researchers recorded both the monkeys' ability to detect motion and how MT's neurons functioned in this process.

Their results showed striking changes in in MT. In monkeys with normal vision, the MT neurons responded through both eyes. However, in those with amblyopia, the MT neurons showed stronger response in one eye—usually the one not affected by the disorder. Normal visual motion perception relies on neurons that integrate information about the position of moving objects as they cross the visual image. The NYU researchers found that this ability to integrate motion information was defective in neurons driven through the affected eye, which might explain the animal's deficits in motion perception.

"This study shows that results from changes in the brain that extend beyond the ," said J. Anthony Movshon, director of the Center for Neural Science and the paper's senior author, adding that many other affected neurological regions remain undiscovered.

Related Stories

Recommended for you

Neuro chip records brain cell activity

October 26, 2016

Brain functions are controlled by millions of brain cells. However, in order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large ...

Can a brain-computer interface convert your thoughts to text?

October 25, 2016

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential ...

The current state of psychobiotics

October 25, 2016

Now that we know that gut bacteria can speak to the brain—in ways that affect our mood, our appetite, and even our circadian rhythms—the next challenge for scientists is to control this communication. The science of psychobiotics, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 11, 2010
Amblyopia has been treated successfully with vitamin E supplementation for some reason.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.