Novel regulatory process for T cells may help explain immune system diseases

October 19, 2010

A newly identified regulatory process affecting the biology of immune system T cells should give scientists new approaches to explore the causes of autoimmunity and immune deficiency diseases.

In findings posted online ahead of publication in (PNAS), scientists at Cincinnati Children's Hospital Medical Center report a novel process of coordinated cellular communications vital to the maintenance of T cells. If the process breaks down, T cells proliferate rapidly and die off. This could disrupt the immune system's normal defensive functions.

"This study involves an important mechanistic finding affecting the molecular regulation of T cell biology that will have implications in our future understanding of and autoimmunity," said Yi Zheng, Ph.D., co-investigator on the study and director of Experimental /Cancer Biology at Cincinnati Children's.

T cells – named such because they originate in the thymus – are a type of white blood cell vital to the body's and its defense against pathogens and disease.

Scientists entered the current study knowing from earlier research that normal T cell biology involves carefully coordinated signaling between what are known as T cell receptors and a gene/protein called interluken-7 receptor (IL-7Ra). IL-7Ra is vital to the formation of white blood cells called lymphocytes, which include T cells. Unknown before this study, however, were the detailed mechanisms that regulate this coordination.

In a variety of test tube experiments and experiments involving mice, researchers determined the cell division control protein Cdc42 is essential to coordinating a signaling network of genes/proteins and enzymes that control normal T cell biology. The disruption caused by loss of Cdc42 included restricted signaling by IL-7Ra, an initial hyper-proliferation of and their rapid loss through programmed cell death. When the researchers were able to reconstitute Cdc42 in their experiments, T cell biology became more normalized, they report.

Related Stories

Recommended for you

Gut microbe movements regulate host circadian rhythms

December 1, 2016

Even gut microbes have a routine. Like clockwork, they start their day in one part of the intestinal lining, move a few micrometers to the left, maybe the right, and then return to their original position. New research in ...

Reactivation of embryonic genes leads to muscle aging

December 1, 2016

Developmental genes and pathways strictly regulate embryogenesis. The process is strongly driven by so-called Hox-genes. Now, researchers from the Leibniz Institute on Aging (FLI) in Jena, Germany, can show that one of these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.