Viral protein mimic keeps immune system quiet

January 20, 2011

In a new paper published Jan. 21 in the journal Science, a team of researchers led by Microbiology and Immunology professor Blossom Damania, PhD, has shown for the first time that the Kaposi sarcoma virus has a decoy protein that impedes a key molecule involved in the human immune response.

The work was performed in collaboration with W.R. Kenan, Jr. Distinguished Professor, Jenny Ting, PhD. First author, Sean Gregory, MS, a graduate student in UNC's Department of Microbiology and Immunology played a critical role in this work.

The virus-produced protein, called a homolog, binds to the cellular that normally triggers an , a key immune system weapon for fighting viral infection. However, the homolog lacks a key part of the that triggers the inflammation process. Inflammasome activation leads to the production of proinflammatory cytokines and eventual cell death.

Damania compares the homolog's action to what can happen when completing a jigsaw puzzle. "Sometimes there will be a piece that 'almost' fits into an available space, but because it's not an exact fit, leaving it there will keep you from completing the puzzle. The viral homolog gums up the works, preventing the formation of a large complex called the inflammasome, and keeping the cell's immune response from deploying."

According to Damania, a cell's response to a viral invader is to commit suicide. The cells die rather than spread the virus, which uses the cell by hijacking its to produce more virus. Kaposi sarcoma virus' ability to evade the body's immune system helps it lie dormant and persist in the body over a lifetime.

Both researchers are members of UNC Lineberger Comprehensive Cancer Center. Dr. Damania studies the Kaposi's sarcoma virus, which is known to cause certain types of human cancer, because it can infect cells and lie dormant without triggering cellular death. Virus-infected then proliferate, and can give rise to cancer.

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.