Research leads to improved calcium supplement derived from crustacean shells

February 18, 2011
According to the new study published in the Journal of Bone and Mineral Research, this type of Amorphous Calcium Carbonate (ACC) consists of unstable, nano-sized particles. Several species of crustaceans, including freshwater crayfish, are capable of stabilizing this mineral form so they can efficiently store and rapidly re-use large calcium quantities. Using new technology inspired by the crustaceans’ natural process, the Ben-Gurion University of the Negev researchers tested this synthetic ACC compound against other commonly used calcium supplements. Results of experiments showed that the absorption and retention rates were up to 40 percent higher in the blood and 30 percent higher in bone when the ACC compound is compared to other calcium sources. Such dramatic enhancement in absorption may be useful in reducing the necessary dosage of calcium, lowering side effects and increasing a patient's compliance. Credit: Marganit Capaso/Amorphical

Ben-Gurion University of the Negev (BGU) researchers have developed a unique technology that stabilizes an otherwise unstable form of calcium carbonate. This mineral form provides significantly higher biological absorption and retention rates than other sources presently used as dietary calcium supplements.

Calcium is considered to be one of the most important minerals in the human body for maintaining and coronary health. Insufficient dietary can induce osteoporosis and poor blood-clotting.

"Since most adults today achieve their daily of calcium with supplements, this new form will prove to be substantially more beneficial," according to Dr. Amir Berman, a researcher and a member of the BGU Ilse Katz Institute for Nanoscale Science and Technology.

According to the new study published in the , this type of Amorphous (ACC) consists of unstable, nano-sized particles. Several species of crustaceans, including freshwater crayfish, are capable of stabilizing this mineral form so they can efficiently store and rapidly re-use large calcium quantities. Using new technology inspired by the crustaceans' natural process, the BGU researchers tested this synthetic ACC compound against other commonly used calcium supplements.

Results of experiments performed on laboratory animals showed that the absorption and retention rates were up to 40 percent higher in the blood and 30 percent higher in bone when the ACC compound is compared to other calcium sources. Such dramatic enhancement in absorption may be useful in reducing the necessary dosage of calcium, lowering side effects and increasing a patient's compliance.

More information: Solubility and Bioavailability of Stabilized Amorphous Calcium Carbonate, Bone and Mineral Res. 26(2) 364-372 URL: DOI:10.1002/jbmr.196

Related Stories

Recommended for you

Baby teethers soothe, but many contain low levels of BPA

December 7, 2016

Bisphenol-A (BPA), parabens and antimicrobials are widely used in personal care products and plastics. The U.S. and other governments have banned or restricted some of these compounds' use in certain products for babies and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.