Algae may be the solution to blindness

April 15, 2011 by Deborah Braconnier report

(PhysOrg.com) -- The song about three blind mice may just be a song of the past according to new research presented by neuroscientist Alan Horsager from the Institute of Genetic Medicine at the University of Southern California with the report set to appear in Molecular Therapy. Using genes from algae injected into the retina, Horsager hopes this research will lead to a treatment for some forms of blindness.

Over 15 million people suffer from some form of , with the most common conditions being retinitis pigmentosa (RP) and age-related (AMD). Both of these conditions are caused when the photoreceptors in the eye are damaged. The photoreceptors are responsible for transforming light entering the eye into electrical impulses, but when damaged, the brain is unable to receive this information.

Horsager’s team is working with gene therapy and the gene responsible for making Channelrhodopsin-2 (ChR2) in algae. This photosensitive protein in the algae is what helps direct them toward a source of light.

The of the human eye is made up of three cellular layers. The first layer is the photoreceptors, which is what is damaged in people with RP and AMD. The second layer of the retina is made of bipolar cells which work to transmit information between the photoreceptors and the third layer, the ganglion. The ganglion is what then transmits light signals to the brain.

Horsager’s plan is to use the bipolar cells and make them work as as well. By injecting the gene into the bipolar cells, the idea is to have them produce the ChR2 and operate as a photoreceptor. With the bipolar cells able to sense light, they would then be able to transmit this information to the ganglion, which would then in turn transmit it to the .

The teams tested this on groups of mice and found that ten weeks after the injection of the , the bipolar cells were producing the ChR2 protein. They then put the mice in a maze of water with six possible paths with one having a ledge for the mice to get out of the water. Shining a light through the pass with the ledge, the gene-treated mice were able to find the path 2.5 times faster than the untreated blind mice.

The team is continuing its research and hopes to begin clinical trials in humans within the next two years.

Explore further: USC researchers begin tests on next generation of retinal implant

More information: Doroudchi, M.M., Greenberg, K.P, Liu, J., Silka, K.A., Boyden, E.S., Lockridge, J.A., Arman, A.C., Janani, R., Boye, S.E., Boye, S.L., Gordon, G.M., Matteo, B.C., Sampath, A.P., Hauswirth, W.W., Horsager, A. “Virally-Delivered Channelrhodopsin-2 Safely and Effectively Restores Visual Function in Multiple Models of Blindness”. (Accepted, Molecular Therapy).

Related Stories

Scientists successfully awaken sleeping stem cells

March 18, 2008

Scientists at Schepens Eye Research Institute have discovered what chemical in the eye triggers the dormant capacity of certain non-neuronal cells to transform into progenitor cells, a stem-like cell that can generate new ...

Gene therapy restores vision to mice with retinal degeneration

October 16, 2008

Massachusetts General Hospital (MGH) researchers have used gene therapy to restore useful vision to mice with degeneration of the light-sensing retinal rods and cones, a common cause of human blindness. Their report, appearing ...

Cats' eye diseases genetically linked to diseases in humans

March 4, 2009

About one in 3,500 people are affected with retinitis pigmentosa (RP), a disease of the retina's visual cells that eventually leads to blindness. Now, a University of Missouri researcher has identified a genetic link between ...

The difference between eye cells is... sumo?

March 9, 2009

Researchers at the Johns Hopkins University School of Medicine and Washington University School of Medicine have identified a key to eye development — a protein that regulates how the light-sensing nerve cells in the retina ...

Sight recovery in mice

June 24, 2010

Swiss researchers from the Friedrich Miescher Institute, in collaboration with Inserm researchers from CNRS and UPMC in the Institut de la Vision, have restored sight to mice afflicted with retinitis pigmentosa. The results ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

mjesfahani
not rated yet Apr 16, 2011
Excellent research. it'll have excellent results on our lives:)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.