Scientists flex their muscles to solve an old problem

This is a view at the movable detector in the ESRF beamline ID02 for small-angle scattering studies. The detector is at the far end of the long, hollow tube. Beamline scientist Theyencheri Narayanan watches from the left. Credit: P. Ginter/ESRF

( -- In a famous experiment first performed more than 220 years ago, Italian physician Luigi Galvani discovered that the muscles of a frog's leg twitch when an electric voltage is applied. An international group of scientists from Italy, the UK and France has now brought this textbook classic into the era of nanoscience. They used a powerful new synchrotron X-ray technique to observe for the first time at the molecular scale how muscle proteins change form and structure inside an intact and contracting muscle cell. The results are published in the 11 April 2011 issue of the Proceedings of the National Academy of Sciences (PNAS).

The team included scientists from Universita di Firenze (Italy), King's College London (UK) and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).

A muscle cell contains two sets of filaments composed of the proteins actin and , respectively. Muscles contract as a result of the relative sliding of these filaments. When the brain sends a nerve signal to activate a muscle, the electrical signal is transmitted to the muscle cell. This sets off a chain of events inside the muscle cell that eventually leads to changes in the structure of the myosin and actin filaments.

This is a composite image made from two low-angle diffraction data sets, one taken with muscle fibers at rest (left), and the other with muscle fibers under isometric contraction (right). The color corresponds to the intensity of the X-rays scattered elastically at a very small angle. From the changes, the conformation of the molecular motors is computed. Credit: V. Lombardi, Florence University

But what exactly happens during this process at the molecular level?. "As we need muscles for locomotion, breathing and body posture, and for the contraction of the heart, understanding of these mechanisms has broad significance in biology and medicine", says Malcolm Irving from King's College London.

"Studying a single intact and contracting muscle cell at the molecular scale in milliseconds became possible thanks to a new technique called X-ray interferometry based on low angle diffraction. This requires the extremely intense and narrow beam of X-rays provided by the ESRF", adds Theyencheri Narayanan from the ESRF, a co-author of the paper.

The results of the experiment reveal the conformation of the head domains of myosin—the molecular motors that drive filament sliding—in resting muscle, and show that the movements of the myosin motors following muscle activation are much slower than the structural changes in the . The different timings of the structural changes reveal the signalling pathway between the and myosin filaments in muscle, shedding new light on the mechanism of muscle regulation.

This is the set-up of the experiment at the ESRF where a powerful synchrotron X-ray technique was used to observe for the first time at the molecular scale how muscle proteins change form and structure inside an intact and contracting muscle cell. Credit: V. Lombardi, Florence University

"We were observing quite rapid biological processes, in the order of milliseconds, along with minuscule structural changes, typically 10 nm or less. A human hair is ten-thousand times thicker. To integrate the mechanical and X-ray diffraction methods that are required to resolve the combination of these extremes is a real experimental challenge", explains Vincenzo Lombardi from the Unversity of Florence.

Although the study has no immediate clinical application, its longer-term impact may be in the area of heart disease, in which these fundamental signalling mechanisms are not working optimally in the heart muscle. Existing drugs to treat heart failure by modulating this signalling pathway are far from ideal. "To develop better drugs for heart failure, it's likely that a better understanding of the molecular mechanisms of muscle regulation is needed, and that may be the long-term contribution of our experiments," concludes Malcolm Irving.

More information: Massimo Reconditi et al., Motion of myosin head domains during activation and force development in skeletal muscle, PNAS 11 April 2011.

Related Stories

Secrets of water bug wings shed light on heart beats

date Dec 07, 2010

A research, led by R.J. Perz-Edwards, Ph.D., of Duke University Medical Center, explains how insect flight muscle works, in particular how insects accomplish something called 'stretch activation,' which has been a scientific ...

Key finding in rare muscle disease

date Jan 17, 2007

The finding is in the current issue of Annals of Neurology, a leading international neurology journal, in work led by Professor Nigel Laing and Dr Kristen Nowak of the Laboratory for Molecular Genetics at the Western Austra ...

Muscle weakness: New mutation identified

date Jun 14, 2007

New research, published in The Journal of Physiology, has identified a novel mutation associated with muscle weakness and distal limb deformities. The study demonstrates that muscle weakness experienced by persons with a ...

Recommended for you

Researchers reveal a genetic blueprint for cartilage

date Jul 02, 2015

Cartilage does a lot more than determine the shapes of people's ears and noses. It also enables people to breathe and to form healthy bones—two processes essential to life. In a study published in Cell Re ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.