Scientists find method to probe genes of the most common bacterial STI

In a new study from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, scientists describe successfully mutating specific genes of Chlamydia bacteria, which cause the most common sexually transmitted infection in the United States as well as a type of blindness common in developing nations. The procedure they used will help advance scientists' understanding of how these bacteria cause human disease and expedite the development of new strategies to prevent and control these infections.

The advance could end decades of frustration for scientists who until now have been unable to manipulate Chlamydia genes in the laboratory, inhibiting research progress in the field.

Traditionally, gene manipulation involves directly introducing foreign DNA into . But Chlamydia bacteria live inside cells where they are protected from foreign DNA by a series of cellular and bacterial membranes. Therefore, more complicated and indirect approaches were applied to mutate Chlamydia genes.

The procedure, called Targeting Induced Local in Genomes (TILLING), has been used for years in plant genetics but is new to bacterial genetics. In their study, NIAID scientists used TILLING to successfully change the function of a specific Chlamydia gene. After creating a library of chemically mutated Chlamydia bacteria, they looked for mutations in a specific target gene. The analysis yielded a mutant with a single in the target gene; that change both inactivated the gene and greatly weakened the ability of the organism to survive in laboratory-grown human .

According to the study authors, TILLING may now be used to reveal the unknown function of hundreds of other Chlamydia genes in an effort to better understand these infections and develop new ways to treat and prevent them.

Chlamydia diseases include both sexually transmitted infections, which can result in pelvic inflammatory disease that can cause infertility in women, and trachoma, which can cause blindness and is common in developing nations. More than 1.2 million infections were reported to the U.S. Centers for Disease Control and Prevention in 2009. The World Health Organization estimates that more than 140 million persons have trachoma in regions of Africa, the Middle East, Central and Southeast Asia and Latin America.

More information: L Kari et al. Generation of targeted Chlamydia trachomatis null mutants. Proceedings of the National Academy of Sciences DOI: 10.1073/PNAS.1102229108 (2011).

Provided by National Institutes of Health

not rated yet

Related Stories

Plant study may lead to Chlamydia cure

Nov 08, 2006

U.S. scientists have discovered the Chlamydia bacterium, which causes a sexually transmitted disease, shares an evolutionary heritage with plants.

Scientists Discover Plants Lend Clues to Chlamydia Cure

Nov 10, 2006

Researchers from the Uniformed Services University of the Health Sciences (USU) have discovered that Chlamydia, a bacterium that causes a sexually transmitted disease (STD), shares an evolutionary heritage with plants. That ...

Mice help researchers understand chlamydia

Oct 29, 2007

Genetically engineered mice may hold the key to helping scientists from Queensland University of Technology and Harvard hasten the development of a vaccine to protect adolescent girls against the most common sexually transmitted ...

Recommended for you

Changes in scores of genes contribute to autism risk

Oct 29, 2014

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.