Researchers explain how animals sense potentially harmful acids

Proposed model for how acetic acid might activate the ion channel TRPA1. A new study in the Journal of General Physiology identifies TRPA1 as the sensor in animals responsible for identifying weak acids, an important class of potentially harmful chemicals. Credit: Wang, Y.Y., et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110615.

All animals face the challenge of deciding which chemicals in the environment are useful and which are harmful. A new study greatly improves our understanding of how animals sense an important class of potentially harmful chemicals: weak acids. The study appears online on May 16 in the Journal of General Physiology.

Weak acids like acetic acid (vinegar) and propionic acid (present in fermented foods like Swiss cheese) are shunned by many animals, and with good reason. Many in the environment can have widespread detrimental effects. Humans ingest these substances despite the fact that they actually elicit "irritating" sensations, a that may have been vital for our ancestors' survival.

So what are the molecular sensors and mechanisms involved when animals detect these substances? Although researchers have identified sensors for many , the mechanisms involved in the detection of weak acids have been a mystery. Now, University of Southern California researcher Emily Liman and colleagues identify the sensor as none other than the ion channel TRPA1. The authors show that TRPA1 responds to weak acids when they acidify the cytoplasm within the cell. Such cytoplasmic acidification can have very —even triggering cell death—which explains why this process raises such alarm bells in animals.

Researchers have been surprised in recent years to discover how many different types of noxious stimuli can be sensed by TRPA1, explains Brandeis University's Paul Garrity in a Commentary accompanying the study. With this latest research, weak acids can be added to that growing list.

More information:
Garrity, P.A. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110657
Wang, Y.Y., et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110615

Related Stories

Scientists sniff out the evolution of chemical nociception

Mar 17, 2010

Whenever you choke on acrid cigarette smoke, feel like you're burning up from a mouthful of wasabi-laced sushi, or cry while cutting raw onions and garlic, your response is being triggered by a primordial chemical sensor ...

Recommended for you

A hybrid vehicle that delivers DNA

22 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.