'Blueprint' for blocking MMP may unlock new treatments for deadly blood infection

May 18, 2011

Researchers studying the life threatening infectious disease sepsis have discovered how the infection can lead to a fatal inflammatory response through blood vessel cells. The research, which is published in EMBO Molecular Medicine, focuses on blocking crucial Matrix Metalloprotease enzymes (MMP) which activate the response.

Sepsis, and the associated (SIRS), is a deadly condition caused by an infection of the blood which leads to whole-body inflammation. The condition is a major cause of death in intensive care wards worldwide and is most common in elderly and critically ill patients, as well as patients who are immunocompromised.

"Sepsis is a , yet the underlying mechanisms which allow it to change body functions remains poorly understood and this has blocked the advancement of potential treatments," said lead author Athan Kuliopulos, from Tufts Medical Center and Tufts University School of Medicine, Boston. "One such mechanism is the inability of the body to regulate the inflammatory-coagulation response to the infection, which can seriously damage the patient."

The team focused their research on Matrix Metalloprotease-1 (MMP-1) which plays a key role in the immune systems response to invading pathogens and infectious diseases, but can cause uncontrolled tissue damage, which threatens the life of patients.

The study revealed how human sepsis patients have been found to have elevated levels of proMMP-1 and active MMP-1 in which predicted both early and late death at 7 and 28 days after diagnosis.

By studying infected mice the team examined how MMP-1 was released from , the thin layer of cells which cover the interior surface of blood vessels. The team found that the blocking of MMP-1 activity suppressed endothelial barrier disruption, helped prevent lung failure, and improved survival in mice.

"We made the discovery that MMP-1, and its mouse equivalent MMP-1a, activates protease-activated receptors which contribute to the pro-inflammatory response of the body to sepsis through endothelial cells," said Kuliopulos. "By blocking the mouse MMP-1 we significantly improved the survival of the mice thus demonstrating a dependence on MMP-1."

The findings reveal MMP-1 to be an important early activator and suggest that therapeutics which target MMPs may prove beneficial in the treatment of sepsis.

"Sepsis remains a common, difficult to manage and stubbornly persistent syndrome when caring for critically ill patients," said Kuliopulos. "This discovery that MMP-1 acts as an activator provides us with a blueprint to investigate entirely new types of treatment for patients."

Explore further: Naturally occurring enzyme can break down key part of Alzheimer's plaques

More information: Tressel. S, Kaneider. N, Kasuda. S, Foley. C, Koukos. G, Austin. K, Agarwal. A, Covic. L, Opal. S, Kuliopulos. A, “A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis”, EMBO Molecular Medicine, Wiley-Blackwell, May 2011, DOI: 10.1002/emmm.201100145

Related Stories

Key to out-of-control immune response in lung injury found

August 16, 2007

Researchers at the University of Illinois at Chicago College of Medicine have discovered how a protein modulates the inflammatory response in sudden, life-threatening lung failure. The protein's previously unknown role is ...

How life-threatening blood clots take hold

April 16, 2009

When plaques coating blood vessel walls rupture and expose collagen, platelets spring into action to form a blood clot at the damaged site. Now, a new report in the April 17th issue of the journal Cell, a Cell Press publication, ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dogbert
not rated yet May 18, 2011
Excellent research. We need new/better interventions to prevent and treat sepsis.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.