For hearing parts of brain, deafness reorganizes sensory inputs, not behavioral function

– The part of the brain that uses hearing to determine sound location is reorganized in deaf animals to locate visual targets, according to a new study by a team of researchers from Virginia Commonwealth University and the University of Western Ontario in Canada.

These findings propose a new theory for cross-modal plasticity: loss of one sensory modality is substituted by another while maintaining the original function of the brain region.

It is known that persons who have suffered major sensory loss, such as deafness, show compensatory, or even superior performance in the remaining senses. This occurs through a process of cross-modal plasticity, where loss of one sensory modality is replaced by the remaining senses. But researchers have not known how the brain region vacated by one sensory modality selects its sensory replacement – until now.

In a study, published online the week of May 9 in the Early Edition of the , the team first examined the region of auditory cortex in hearing adult animals that responded to auditory stimuli and controlled orienting and localization behaviors in response to sounds.

"However, in deaf animals, that same cortical region responded to visual stimuli yet still controlled orienting and localization behaviors, thus preserving the functional role of the region despite the loss of its original sensory inputs," said principal investigator Alex Meredith, Ph.D., professor in the VCU Department of Anatomy and Neurobiology in the VCU School of Medicine.

According to Meredith, this research provides insight into brain reorganization following sensory loss, which may help researchers better understand how rehabilitative medicine, such as cochlear implants, may function more effectively in deaf patients.

These findings build on research published last year in the journal Nature Neuroscience by Meredith and colleagues from the University of Western Ontario. That research examined the brain regions in congenitally deaf adult animals responsible for cross-modal plasticity. Those results showed that cross-modal plasticity does not randomly distribute across the areas of the brain vacated by the lost sensory modality, but demonstrated that cross-modal plasticity takes up residence in selected areas. The present study indicates that areas exhibiting cross-modal plasticity retain their original behavioral function.

Related Stories

Research discovers how the deaf have super vision

Oct 10, 2010

Deaf or blind people often report enhanced abilities in their remaining senses, but up until now, no one has explained how and why that could be. Researchers at The University of Western Ontario, led by Stephen Lomber of ...

Study watches the brain 'shutting off'

Apr 19, 2006

Israeli scientists say they have observed the human brain in the act of losing "self" as it shuts down introspection during a demanding sensory task.

Research shows how sensory-deprived brain compensates

Apr 17, 2007

Whiskers provide a mouse with essential information to negotiate a burrow or detect movement that could signal a predator's presence. These stiff hairs relay sensory input to the brain, which shapes neuronal activity. In ...

Recommended for you

Proteases help nerve cells to navigate

1 hour ago

Our ability to move relies on the correct formation of connections between different nerve cells and between nerve and muscle cells. Growing axons of nerve cells are guided to their targets by signposts expressed ...

New test to help brain injury victims recover

Oct 21, 2014

A dynamic new assessment for helping victims of trauma to the brain, including those suffering from progressive conditions such as dementia, has been developed by a clinical neuropsychologist at the University ...

See-through sensors open new window into the brain

Oct 21, 2014

(Medical Xpress)—Developing invisible implantable medical sensor arrays, a team of University of Wisconsin-Madison engineers has overcome a major technological hurdle in researchers' efforts to understand ...

User comments