Noncoding RNA may promote Alzheimer's disease

Researchers show that the small RNA 38A spurs cells to manufacture Var IV, a splice variant of a key neuronal protein, and potentially promote Alzheimer's disease. In this image, Var IV (green) is prevalent in cells that make extra 38A (left) but rare in control cells (right). Credit: Massone, S., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201011053.

Researchers pinpoint a small RNA that spurs cells to manufacture a particular splice variant of a key neuronal protein, potentially promoting Alzheimer's disease (AD) or other types of neurodegeneration. The study appears in the May 30 issue of The Journal of Cell Biology.

Like a movie with an alternate ending, a protein can come in more than one version. Although scientists have identified numerous proteins and RNAs that influence alternative splicing, they haven't deciphered how cells fine-tune the process to produce specific protein versions. Four years ago, researchers identified a set of 30 small, noncoding RNAs that they suspected help regulate gene expression.

Italian researchers have now determined the function of one of the RNA snippets, known as 38A, that hails from a noncoding part of the gene that encodes the protein KCNIP4. KCNIP4 helps ensure that neurons fire impulses in a characteristic slow, repeating pattern. The researchers found that 38A spurs cells to produce an alternative splice variant of KCNIP4, Var IV, that disrupts this current, potentially leading to neurodegeneration.

KCNIP4 normally interacts with , the enzyme complex that helps generate (Abeta), a protein that accumulates in the brains of AD patients. But Var IV can't make the connection, possibly disturbing Abeta processing. Supporting that notion, the researchers found that levels of 38A were more than 10 times higher in from AD patients than in controls and that 38A hiked output of the more dangerous Abeta isoform Abeta 1-42.

More information: Massone, S., et al. 2011. J. Cell Biol. doi:10.1083/jcb.201011053

Related Stories

APP -- Good, bad or both?

Oct 18, 2009

New data about amyloid precursor protein, or APP, a protein implicated in development of Alzheimer's disease, suggests it also may have a positive role -- directly affecting learning and memory during brain development. So ...

Recommended for you

Infant cooing, babbling linked to hearing ability

5 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

6 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

10 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

12 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments