New protein linked to Alzheimer's disease

May 24, 2011

After decades of studying the pathological process that wipes out large volumes of memory, scientists at The Feinstein Institute for Medical Research discovered a molecule called c-Abl that has a known role in leukemia also has a hand in Alzheimer's disease. The finding, reported in the June 14th issue of the Journal of Alzheimer's Disease, offers a new target for drug development that could stave off the pathological disease process.

Peter Davies, PhD, head of the Feinstein Institute's Litwin-Zucker Center for Research in Alzheimer's Disease, became interested in c-Abl when he found that the protein was part of the plaques and tangles that crowd the brains of Alzheimer's patients. The protein c-Abl is a tyrosine kinase involved in , cell division and . In patients with (CML), c-Abl is turned up in . Inhibiting c-Abl with the cancer drug prevents cell division. There was quite a lot known about c-Abl when Dr. Davies began thinking about its possible role in Alzheimer's. He was looking at that phosphorylate tau, the protein that accumulates inside of the neurons during the disease process.

Dr. Davies questioned whether activated c-Abl turned on the cell cycle and could kill . He designed the study to test this idea and found that turning on the cell cycle in adult brain damages the cells. In their current study, the investigators devised a clever way to activate c-Abl in neurons of normal adult mice. They turned on human c-Abl genes in two different regions – the hippocampus and the neocortex – in adult mice and discovered abundant cell death, especially in the hippocampus. "You don't even need to count, you can just look and see holes in the cell layers of the hippocampus," said Dr. Davies. "It is stunning. Even before the neurons die, there is florid inflammation."

He said that the animal model is ideal for testing the benefit of drugs that turn off c-Abl. While Gleevec works in CML, it does not cross the blood-brain barrier so it would not be useful. Dr. Davies and his colleagues are looking for other drugs that inhibit c-Abl and can get into the brain. "We have a great model to test compounds for Alzheimer's disease. Will regulating c-Abl make a difference for patients? We won't know unless we try it in double blind clinical trials."

The researchers are now working to understand the mechanism of cell death. They are also investigating why males die considerably sooner than females – 12 to 15 weeks compared to 24 to 26 weeks. "It is an incredibly interesting model," said Dr. Davies. "If c-Abl is important we can learn how it works."

More information: The paper detailing the findings has been published in an early online version. It is scheduled for publication in the June 14th issue of the Journal of Alzheimer's Disease (www.j-alz.com).

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.