Reining in nicotine use: Midbrain habenula region plays key role in nicotine dependence

May 12, 2011

A person's vulnerability to nicotine addiction appears to have a genetic basis, at least in part. A region in the midbrain called the habenula (from Latin: small reins) plays a key role in this process, as Dr. Inés Ibañez-Tallon and her team from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now shown. They also shed light on the mechanism that underlies addiction to nicotine.

According to the World Health Organization WHO in Geneva, it is estimated that tobacco use kills more than five million people each year worldwide. Many of them die of . "Two years ago, studies indicated that genetic variations in a specific gene cluster are risk factors for dependence and lung cancer," Dr. Ibañez-Tallon pointed out. She and her team, together with researchers from the Pasteur Institute in Paris, France and the Russian Academy of Sciences in Moscow, have now elucidated the mechanism underlying this dependence.

They investigated a specific receptor for the neurotransmitter acetylcholine, which is activated by nicotine in smokers and is encoded by this specific gene cluster, consisting of three subunits, that is three genes. "Although this gene cluster is present in the DNA of every cell, the receptor is only expressed in a few restricted areas of the brain. One of them is the habenula in the midbrain," Dr. Ibañez-Tallon explained.

The MDC researchers investigated this receptor and its subunits in egg cells of the African clawed frog (Xenopus laevis) and in transgenic mice. One of the three genes of the cluster is alpha5. "An important percentage of heavy smokers carry a single mutation in this gene. They are more prone to become addicted to nicotine and to develop lung cancer than individuals without this mutation," Dr. Ibañez-Tallon said.

Strong Aversion to Nicotine

A second gene in the encoding this receptor is beta4. The MDC researchers demonstrated that transgenic mice expressing high levels of the beta4 gene have increased sensitivity to nicotine. These mice have a strong aversion to drinking water containing nicotine.

However, when the researchers expressed the mutated variant of the alpha5 gene via a lentivirus in the habenular brain region of these mice, after only two weeks the mice showed a preference for nicotine. Dr. Ibañez-Tallon and her colleagues conclude that only a balanced activity of these two genes can rein in nicotine use.

Explore further: Scientists study worm for nicotine habit

More information: Neuron, May,12, 2011, Vol. 70, Issue 3, pp: 522-535; DOI 10.1016/j.neuron.2011.04.013

Related Stories

Studies identify DNA regions linked to nicotine dependence

February 14, 2007

Americans are bombarded with antismoking messages, yet at least 65 million of us continue to light up. Genetic factors play an important role in this continuing addiction to cigarettes, suggest scientists at Washington University ...

Scientists reveal key mechanism governing nicotine addiction

January 30, 2011

Scientists from the Florida campus of The Scripps Research Institute have identified a pathway in the brain that regulates an individual's vulnerability to the addictive properties of nicotine. The findings suggest a new ...

Nicotine does not promote lung cancer growth in mouse models

April 4, 2011

Nicotine at doses similar to those found in most nicotine replacements therapies did not increase lung cancer tumor incidence, frequency or size, according to results of a mouse study presented at the AACR 102nd Annual Meeting ...

Recommended for you

Next steps in understanding brain function

August 26, 2016

The most complex piece of matter in the known universe is the brain. Neuroscientists have recently taken on the challenge to understand brain function from its intricate anatomy and structure. There is no sure way to go about ...

Scientists map brain's action center

August 25, 2016

When you reach for that pan of brownies, a ball-shaped brain structure called the striatum is critical for controlling your movement toward the reward. A healthy striatum also helps you stop yourself when you've had enough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.