New research results could improve gene therapy

(PhysOrg.com) -- Many diseases are the result of defective genes, and gene therapy is the tantalizing prospect of inserting properly functioning genes into a sick patient. But many promising gene therapies falter after a few weeks, and lasting cures remain elusive.

Why these new genes get “turned off” in patients is not completely understood. A new paper published in Nature by a Brigham Young University professor and colleagues at Stanford may give fundamental insights into how to prevent these genes from being turned off and could lead to new therapies that last much longer.

“The highly regulated dance of genes being turned on and turned off at the appropriate time is what leads to the development of the human body,” said Steven M. Johnson, BYU assistant professor of molecular biology and second author on the paper. “At certain times, some genes are tightly packaged and can’t be turned on, while at other times they are more loosely packed and accessible. Our work shares more details about how this packaging works.”

Johnson began work on the project while a post-doctoral researcher at the Stanford School of Medicine in the lab of Nobel laureate Andrew Fire. The data-intensive study required the same level of persistence that Johnson showed when, after being rejected for three consecutive years by the University of Utah School of Medicine, he eventually earned a Ph.D. in 2004 from Yale University.

The intricate bundling of DNA is required to fit six feet of DNA in the tiny – six micron-wide – nucleus of every cell in the body. For perspective, if a nucleus were the size of a hockey puck, the comparable DNA would be 16 miles long.

That’s why, at any given time, many genes are “buried” inside the tightly wound package of DNA and aren’t accessible by the triggers that could connect to them to turn them on.

A key part of the bundling process is tiny units inside the nucleus, which are like spools wrapped with DNA “thread.”

The Stanford/BYU study created a map of the positions of these units throughout the entire human genome, which includes 3 billion base pairs of DNA. This level of understanding is essential to creating methods to keep the target genes involved in from getting turned off after a few weeks.

“From what we’re learning in this study, we might be able to fix the silencing of these involved in gene therapy if that’s due to them being bundled,” Johnson said. “Researchers could try to re-position the packaging to keep things in an ‘open’ DNA state instead of a ‘closed’ DNA state.”

Related Stories

Genetic switch discovered that turns on pain

Dec 21, 2010

(PhysOrg.com) -- Aberdeen scientists have discovered a 'switch' that turns on a gene that lets us feel pain, in a finding that could be a step towards the development of new painkilling drugs.

The next computer: your genes

May 16, 2011

(PhysOrg.com) -- "Human beings are more or less like a computer," Jian-Jun Shu tells PhysOrg.com. "We do computing work, and our DNA can be used in computing operations." Shu is a professor at the School of Mec ...

Recommended for you

Mysterious esophagus disease is autoimmune after all

7 hours ago

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

Diagnostic criteria for Christianson Syndrome

Jul 21, 2014

Because the severe autism-like condition Christianson Syndrome was only first reported in 1999 and some symptoms take more than a decade to appear, families and doctors urgently need fundamental information ...

New technique maps life's effects on our DNA

Jul 20, 2014

Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment ...

User comments