Scientists discover new method for engineering human tissue regeneration

If pending clinical trials prove successful, a new discovery published in The FASEB Journal could represent a major scientific leap toward human tissue regeneration and engineering. In a research report appearing online, Yale scientists provide evidence to support a major paradigm shift in this specialty area from the idea that cells added to a graft before implantation are the building blocks of tissue, to a new belief that engineered tissue constructs can actually induce or augment the body's own reparative mechanisms, including complex tissue regeneration.

"With the constant growing clinical demand for alternative vessels used for vascular reconstructive surgeries, a significant development for alternative grafts is currently the primary focus of many investigators worldwide," said Christopher K. Breuer, M.D., a researcher involved in the work from Yale University School of Medicine/Yale-New Haven Hospital in New Haven, CT. "We believe that through an understanding of human vascular biology, coupled with technologies such as tissue engineering, we can introduce biological grafts that mimic the functional properties of native vessels and that are capable of growing with the patients." Breuer also says that patients are currently being enrolled in a first-of-its-kind clinical trial at Yale University to evaluate the safety and growth potential of tissue-engineered vascular grafts in children undergoing surgery for .

To make this discovery, Breuer and colleagues conducted a three-part study, starting with two groups of mice. The first group expressed a gene that made all of its fluorescent green and the second group was normal. Researchers extracted cells from the "green" mice, added them to previously designed scaffolds, and implanted the grafts into the normal mice. The seeded bone marrow cells improved the performance of the graft; however, a rapid loss of green cells was noted and the cells that developed in the new were not green, suggesting that the seeded cells promoted vessel development, but did not turn into vessel wall cells themselves. These findings led to the second part of the study, which tested whether cells produced in the host's bone marrow might be a source for new cells. Scientists replaced the bone marrow cells of a female mouse with those of a male mouse before implanting the graft into female mice. The researchers found that the cells forming the new vessel were female, meaning they did not come from the male . In the final experiment, researchers implanted a segment of male vessel attached to the scaffold into a female host. After analysis, the researchers found that the side of the graft next to the male segment developed with male vessel wall cells while the side of the graft attached to the female host's vessel formed from female cells, proving that the cells in the new vessel must have migrated from the adjacent normal vessel.

"There's a very good chance that this study will eventually have a major impact on many disorders that afflict humankind," said Gerald Weissmann, M.D., Editor-in-Chief of The . "These scientists have basically used the body's repair mechanisms to make new tissues through bioengineering. In years to come, starfish and salamanders will have nothing on us!"

More information: Narutoshi Hibino, Gustavo Villalona, Nicholas Pietris, Daniel R. Duncan, Adam Schoffner, Jason D. Roh, Tai Yi, Lawrence W. Dobrucki, Dane Mejias, Rajendra Sawh-Martinez, Jamie K. Harrington, Albert Sinusas, Diane S. Krause, Themis Kyriakides, W. Mark Saltzman, Jordan S. Pober, Toshiharu Shin'oka, and Christopher K. Breuer. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB J. doi:10.1096/fj.11-182246

Related Stories

Stem cell breakthrough: Bone marrow cells are the answer

Jan 28, 2010

Using cells from mice, scientists from Iowa and Iran have discovered a new strategy for making embryonic stem cell transplants less likely to be rejected by a recipient's immune system. This strategy, described in a new research ...

Engineered Blood Vessels Function like Native Tissue

Jul 05, 2007

Blood vessels that have been tissue-engineered from bone marrow adult stem cells may in the future serve as a patient's own source of new blood vessels following a coronary bypass or other procedures that require vessel replacement, ...

Recommended for you

Cell death proteins key to fighting disease

1 hour ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

17 hours ago

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.